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The next biggest challenge for LLMs:
Thinking creatively in open-ended tasks

Test-time Scaling 
(best-of-N)

Dataset 
generation

Scientific discovery
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Originality 
against 

training set

We must not only 
care about…

but also about:

Diversity 
across 

generations

Quality of a given 
generation



Is the current LLM paradigm 
optimal for creative, open-ended  
generations? Can we do better?
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Lots of critical & pioneering 
work answering this!
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But studying real-world tasks is challenging!

● Metrics are subjective
○ What is truly novel and diverse?

● Metrics are hard to scalably compute
○ Novelty against whole internet!

● Challenging to discuss with clarity 
● Challenging to inspire & iterate & debug ideas

○ So many confounding factors!
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What we do:

where we can quantify creative limits 
of LLMs & highlight alternatives 

We draw inspiration from two modes of creativity 
in cognitive science

and design minimal,  open-ended, 
algorithmic tasks to
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Just to set expectations

1. There are no state-of-the-art results here
2. This is not an impressive large-scale study of 

complex real-world tasks.
3. The goal is to gain clarity and develop a very  simple 

test-bed to inspire new ideas
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Combinational creativity

 
● analogies, 
● science, 
● wordplay,
● discovering contradictions 

in literature

Search, retrieve and plan over vast  memory of 
known things  to find novel connections
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A clown  held the door  for me. 

For example: Wordplay

Wordplay as “find a novel path over a 
known vocabulary  graph ”

Clown

Jester Gesture

Hold 
door s.t.

generate
:

What a nice jester !
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What do you call a lawyer  who 
can cook . A sous chef!

For example: Wordplay

Lawyer

Sue
Sous 
chef

Cook

[Fun exercise: find other 
wordplays or jokes and 
reverse-engineer them]

Wordplay as “find a novel path over a 
known vocabulary  graph ”

s.t.

generate
:
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We model combinational creativity as minimal graph 
tasks

Discover novel sibling -parent  
triplets in an in-weights  graph
[as a minimal wordplay abstraction]

such that in in-weights graph

generate  a c b 

Discover novel triangles in an 
in-weights  graph [like finding 
contradictions or feedback loops]

such that in in-weights graph

generate  a b c
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Exploratory creativity 

Plan and devise novel patterns that obey a small set of 
rules
(you don’t necessarily search over a vast memory)

● designing 
problems, 

● deriving 
corollaries,

● generating 
molecules,

● crafting stories
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For example: Problem design or story-writing

Set pieces in conflict such 
that there is a novel 
resolution under 
logical/math/… rules.
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We model exploratory creativity as graph tasks

Construct adjacency lists that 
resolve into a circle graph through 
a novel permutation

generate

such that

Construct adjacency lists 
that resolve into a line  graph 
through a novel permutation

generate

such that
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How we cast these as learning tasks

No one unique solution!
No natural language semantics involved — 
deliberately

i.i.d training set

Fraction of generations that are 
(a) unique (b) unseen and c) 
coherent 

“Creativity” = 

Language 
model

Independent 
test-time 

generations



Is the current LLM paradigm optimal 
for creative, open-ended generations in 
these tasks ? 
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creative outputthe creative “leap of 
thought” 

(What we observe)

(What we do not  observe)

Can “local” next-token-learning on the creative output 
infer the “global” end-to-end creative process?

Creative outputs are generated from an unobserved leap of 
thought
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Can “local” next-token-learning on the creative output 
infer the “global” end-to-end creative process in our tasks ?

Creative outputs are generated from an unobserved leap of 
thought

(What we observe)

(What we do not  observe)
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● Next-token learning fails is known to fail on a specific path-finding task
● Intuition : Model learns local patterns (“clever hans cheats”), ignoring the 

global pattern
● Not a failure of autoregressive inference , but of next-token learning

This is on a closed-ended multi-hop deterministic task; we extend this 
to fewer-hop, open-ended tasks.



Teacherless training
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10 x 10 = 1 0 0

01 0 .

Standard next-token 
training
(aka “teacher-forced”)

10 x 10 = [MASK]

01 0 .

[MASK] [MASK]

Teacherless training
(multi-token because targets “ 1 0 0”  

cannot see immediate past)

Tschannen et al., 2023 ; Monea et al., 2023; Bachmann and Nagarajan, 
2024; 

[Turns out that this is a term in diffusion with “absorb noise”!]
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Next-token  vs. multi-token learning

Creativity = fraction of generations that 
are unique, unseen and coherent

Gemma v1 (2B) pretrained GPT-2 (86M) vs diffusion (100M )

          teacherless  vs diffu sion  (SEDD [Lou, Ming and Ermon ‘24] )

Observation 1:  Teacherless  training is more creative than NTP for large Gemma 
model on all tasks! But not so for small model (echoes Gloeckle et al., 2024 ).
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Next-token  vs. multi-token learning

GPT-2 (86M) vs diffusion (100M )

          teacherless  vs diffu sion  (SEDD [Lou, Ming and Ermon ‘24] )

Observation 2: On smaller model, diffu sion  is more creative than NTP except on 
sibling dataset (which appears too easy). 

Gemma v1 (2B) pretrained 

Creativity = fraction of generations that 
are unique, unseen and coherent
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Next-token  vs. multi-token learning

GPT-2 (86M) vs diffusion (100M )

          teacherless  vs diffu sion  (SEDD [Lou, Ming and Ermon ‘24] )

Observation 3: For smaller model, teacherless training does improve creativity on 
the top-K  samples of the generated distribution

GPT-2 with top-K

Creativity = fraction of generations that 
are unique, unseen and coherent
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Let’s revisit how diversity is elicited

One intuition: Simulating variations in the 
prompt wording

Seed-conditioning: Prefixing random 
strings per example during training and 
testing

But in GANs/VAEs, diversity came 
from input randomization!

Temperature sampling
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Another (speculative) intuition: 

(next-token 
distribution)

For temperature sampling, model must 
process many thoughts to produce 
diverse next-token distribution

With seed-conditioning: model only 
needs to focus on one thought per seed

there’s overparallelism in Transformers;
seed-conditioning tries to reduce this
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Another (speculative) intuition: 

(next-token 
distribution)

For temperature sampling, model must 
process many thoughts to produce 
diverse next-token distribution

there’s overparallelism in Transformers;
seed-conditioning tries to reduce this

With seed-conditioning: model only 
needs to focus on one thought per seed
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See also concurrent position paper
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We thought perhaps seed-conditioning is too 
naive

Whereas in VAEs and GANs, the “seed” 
is learned,  here we create seed–output 
bindings arbitrarily. 

Seed-conditioning: Prefixing random 
strings per example during training and 
testing

Put that way, 
seed-conditioning 
sounds like a terrible 
idea.
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But seed-conditioning works! (We don’t know 
why)

(Figure is for GPT-2 model, 
but holds on Gemma v1 too)

Seed-conditioning with zero 
temperature ( greedy ) is  
comparable to temperature 
sampling in creativity!

Seed-conditioning can even be 
the most creative method!

Caveat: Requires training &  
no results are real data.
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Also see: learned diversity-inducing technique for Transformers
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Summary
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1. Two types of creativity in cognitive 
science: 

a. combinational (wordplay, analogies)
b. exploratory (problem design)

2. We abstracted these as minimal, 
graph-algorithmic tasks. 

a. Discovering novel in-weights structures
b. Constructing adjacency lists that resolve

3. Compared next-token learning vs 
multi-token learning and temperature 
sampling vs seed-conditioning
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Remark 1 of 3 : Why do we need spherical cows?
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● Help clarify our thinking
● Separate different things we care 

about
● Examine confounders, causal 

factors
● Debug cleanly
● Inspire algorithmic ideas & quick 

tests



Remark 2 of 3: Some clarifying points on 
the next-token prediction debate

42
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Pessimists

If humans simply uttered the 
next-token, we’d be speaking 
gibberish. 

Optimists

By chain rule of probability, any 
distribution can be represented by 
next-token prediction (NTP)!
Pr[t 1 t2 t3 ...] 

= Pr[ t 1 ]  x 
   Pr[ t 2 | t1 ]  x 

          Pr[ t 3 | t1 t2 ] ... Even tiny next-token errors 
snowball exponentially: 

Pr[all tokens correct] 
= (1-є) x (1- є) x (1- є)... You’re just using the NTP backbone 

incorrectly. Wrap a 
verifier/backtracker or do RL !



The argument goes in circles due to conflated 
terminology: “next-token prediction” may refer 
to “autoregressive inference ” or “next-token 
learning ”
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Optimist: “ Why care about future-token learning 
if 

NTP + RL can already (seemingly) 
plan?”

My answer: If RL only elicits latent skills from base model 
⇒ we want to make base model use data efficiently!

Also: How would one use RL to improve originality?

45
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Remark 3 of 3: There’s a belief that next-token learning 
on a non-left-to-right order suffices. Is this reasonable?

Indeed, prior counterexamples to NTP are solved 
by NTP upon reversing  the target tokens

Reverse target : “goal  b a start ”Reverse target : 0001
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Creative texts have “deep patterns” not visible at the token 
level

true research 
ideation process

rearrangement

Mere token rearrangement reveals no insight into the 
generative process!
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Our tasks minimally capture this “deep pattern”

Construct adjacency 
lists that resolve into a 
circle graph through a 
novel permutation

generate

such that

Discover novel triangles in an 
in-weights graph 

No token is more privileged; reordering reveals nothing; all tokens need 
to be learned simultaneously!
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Limitations & Future work

1. Do not use our spherical cows as a sole benchmark: 
use it for understanding, inspiring new ideas & sniff 
tests!
a. Make seed-conditioning work in real-world 

datasets; how to “learn” the seeds? 

2. Our findings are still not fully characterized e.g., 
effect of model-size, top-K

3. We do not capture the full richness of creativity
a. How to think about “transformational 

creativity”?
50
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CFG
Physics of Language 
Models: Part 1, 
Allen-Zhu & Li 2023 

Graph path-finding 
“Towards an Understanding of Stepwise 
Inference in Transformers:
A Synthetic Graph Navigation Model”
Khona, Okawa, Hula, Ramesh, Nishi, Dick, Lubana, 
& Tanaka 2024

Controlled tasks are valuable!



Thank you!
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Questions?
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3. Compared next-token learning vs 
multi-token learning and temperature 
sampling vs seed-conditioning

1. Two types of creativity in cognitive 
science: 

a. combinational (wordplay, analogies)
b. exploratory (problem design)

2. We abstracted these as minimal, 
graph-algorithmic tasks. 

a. Discovering novel in-weights structures
b. Constructing adjacency lists that resolve

[all diagrams in this talk are 
human-drawn]


