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of next-token prediction
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The next biggest challenge for LLMs:
Thinking creatively in open-ended tasks

Test-time scaling 
(best-of-N)Dataset 

generation
Scientific discovery
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Lots of critical & pioneering 
work debating this!
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Originality 
against 
massive  

training set

We must not only 
care about…

but also about:

Diversity 
across 

generations

Quality of a given 
generation



Is the current LLM paradigm 
optimal for creative, open-ended  
generations? Can we do better?
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diversity on 
continuous 

data
reasoning on 
discrete data

creativity

We need 
minimal 
tasks!
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What we do:

where we can quantify creative limits 
of LLMs & highlight alternatives. 

We design minimal , open-ended, 
discrete-algorithmic tasks

isolating two modes of creativity in 
cognitive science,

Margaret Boden, 1990
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Combinational  
creativity 10
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Why did the scarecrow  win an award ?

Wordplay in abstract form

scarecro
w award

outstanding 
in field

Because he was  outstanding in his field!

Wordplay as “find a random, novel 
path over a large, known  graph ”

s.t.

setup 1 setup 2

punchlin
e

generate
:

setup 2setup 1 punchlin
e
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Adam Singapore 

SGD
Optimizer 

SGD
Currenc

y

ICML Winter 

Icy

[At ICLR’25 Singapore]
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Next-toke
n 

prediction

Fantasy
author 

Tolkien

“Trained an LLM to predict if 
someone will be a successful fantasy 
author based on their writing samples,

Sounds fancy,

But all it’s doing is predicting 
the next Tolkien.”

[Unabridged originals below]
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Combinational creativity

 
● analogies, 
● wordplay,
● discovering connections 

across literature

Search, retrieve and plan over vast  memory of known 
things  to find novel connections
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We model combinational creativity as symbolic graph 
tasks

Discover novel triangles in an 
in-weights  graph [like finding 
contradictions or feedback loops]

such that in in-weights graph

generate  a b c

Discover novel sibling -parent  
triplets in an in-weights  graph
[as a minimal wordplay abstraction]

such that in in-weights graph

generate  a c b 
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Exploratory  creativity
17
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Exploratory creativity 

Plan and devise novel patterns that obey a small set of 
rules
(you don’t necessarily search over a vast memory)

● designing 
problems,

● generating 
molecules,

● deriving 
corollaries,

● crafting stories
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For instance: Problem design

Set pieces in conflict such 
that there is a novel 
resolution under 
logical/math/… rules.
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We model exploratory creativity as symbolic graph tasks

Construct adjacency lists 
that resolve  into a circle 
graph through a novel 
permutation

generate

such that

Construct adjacency lists 
that resolve  into a line graph 
through a novel permutation

generate

such that
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How we cast these as learning tasks

i.i.d training set

Fraction of generations that are 
(a) unique (b) unseen and c) 
coherent 

“Creativity” = 

Language 
model

Independent 
test-time 

generations

Mimics pretraining or how protein/molecule generation models are 
trained



Is the current LLM paradigm optimal 
for creative, open-ended generations in 
these tasks ? 
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creative output

Creative outputs are generated from a creative process…

creative 
process

… that is unobserved and highly implicit in the output!

generate
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Creative outputs are generated from a creative process…

setup 2setup 1 punchlin
e

generate

… that is unobserved and highly implicit in the output!

generateFirst plan  punchlin
e

setup

2

setup

1

Then  
pick  
children
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Creative outputs are generated from a creative process…

Our question:  Can “local” next-token-learning on 
creative output  infer  the “global” end-to-end creative 
process?

… that is unobserved and highly implicit in the output!

setup 2setup 1 punchlin
e

generateFirst plan  punchlin
e

setup

2

setup

1

Then  
pick  
children
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Creative outputs are generated from an unobserved leap of 
thought

(What we observe)

(What we do not  observe)

Our question:  Can “local” next-token-learning on creative output  
infer the “global” end-to-end creative process?
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We extend this to our open-ended tasks:  
Next-token learning may
resort to obvious local shortcuts ( Clever Hans  cheats ),
   ignore the implicit global pattern (the creative planning 
process) , 
      memorize more, and reduce creativity.

Next-token learning is known 
to fail in a deterministic 
planning task.
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We extend a known failure of next-token learning in some 
deterministic planning tasks to our open-ended creative 
tasks.



How next-token may fit 
training data:
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setup 2setup 1 punchlin
e

How we want to fit training data:

First plan  punchlin
e

setup

2

setup

1

Then  
pick  
children

punchline

“Clever Hans” Cheat :

setup 2setup 1 as 
“ParentOf ”

Memorize: setup 2setup 1

or learn  
inefficiently

Hypothesis: How next-token learning may reduce 
creativity



Multi-token learning
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aka “Teacher-Forcing”

Next-token learning
Teacherless training
[Tschannen et al., ‘23 ; 

Monea et al., ‘23; 
Bachmann & Nagarajan, ‘24]

14 x 14 = [MASK]

61 9 .

[MASK] [MASK]Input: 14 x 14 = 1 9 6

61 9 .Target
: 

Target given as input, 
right-shifted. Target not given as 

input.

Target masked to various 
levels given as input.

Diffusion
SEDD

 [Lou, Ming and Ermon ‘24]

14 x 14 = [MASK]

61

 9 [MASK] .
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Next-token vs. multi-token learning
Creativity = fraction of generations 
that are unique, unseen and 
coherent

Gemma v1 (2B) GPT-2 (86M)

Observation 1:  Teacherless  training is more creative than NTP for the larger 
Gemma model on all tasks! 

Standard next-token 
learning
Teacherless multi-token 

Training objectives

But not so for small model (echoes Gloeckle et al., 
2024 ).
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Next-token  vs. multi-token learning
Creativity = fraction of generations 
that are unique, unseen and 
coherent

Gemma v1 (2B) GPT-2 (86M)

Standard next-token 
learning
Teacherless multi-token 

Training objectives

Absorbing diffusion 
(multi-token)

Uniform diffusion 
(multi-token)

Observation 2: On smaller model, diffu sion  is more creative than NTP except on 
sibling dataset (which appears too easy). 
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Next-token  vs. multi-token learning

GPT-2 (86M) vs diffusion (100M )

          teacherless  vs diffu sion  (SEDD [Lou, Ming and Ermon ‘24] )

Observation 3: For smaller model, teacherless training does improve creativity on 
the top-K  samples of the generated distribution

GPT-2 with top-K

Creativity = fraction of generations that 
are unique, unseen and coherent
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Diversity is typically elicited through temperature sampling 
but… 

Our question:   Temperature sampling demands 
“overparallelism” for diversity; this seems burdensome!  Is 
there an alternative?

The model is forced to flesh out many 
diverse creative processes

for a diverse next-token distribution.



38

Can we focus on fleshing out one thought instead of parallelizing 
many?
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Seed-conditioning  as an alternative to temperature sampling

Seed-conditioning: Prefixing random 
tokens per example during training and 
testing

Instead of 
output -randomization, 

Temperature sampling

we try input -randomization —
like in GANs/VAEs, but way more 
naively
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Or perhaps seed-conditioning is too naive?

Put that way, seed-conditioning 
sounds like a terrible idea!

Seed-conditioning arbitrarily dictates  
which noise binds to which output .

But typically (e.g., in GANs, VAEs), this 
binding is learned!   
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Seed-conditioning  as an alternative to temperature sampling

(Figure is for GPT-2 model, 
but holds on Gemma V1 too)

Seed-conditioning with 
zero temperature ( greedy ) is  
comparable to temperature 
sampling in creativity!

Seed-conditioning can 
even be the most 
creative method!
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Summary
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1. Two types of creativity in cognitive 
science: 

a. combinational (wordplay, analogies)
b. exploratory (problem design)

2. We abstracted these as minimal, 
graph-algorithmic tasks. 

a. Discovering novel in-weights structures
b. Constructing adjacency lists that resolve

3. Compared next-token learning vs 
multi-token learning and temperature 
sampling vs seed-conditioning



Limitations
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2.   Our findings are still not fully characterized (model-size, 
pretraining)

1. Our ideas need to be tested in the real-world. 

3. We do not look at how RL post-training, CoT, thinking addresses 
creative limits.

● Still useful to improve the base model’s skills, 
data/compute-efficiency

● Can mere exploration + sparse rewards discover creativity?

4 We do not capture the full richness of creativity, 
subjective aspects (surprisingness, interestingness…).



Future Work
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1. Use our tasks to think clearly, inspire new 
ideas, do sniff tests, debug etc., e.g., length 
generalization, shifts, in-context learning  

3. Tasks for “ transformational  creativity”, 
extrapolative creativity, out-of-the-box thinking…

2. Seed-conditioning:
● Make it work in the wild 
● Understand  why it works as it is.
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CFG
Physics of Language 
Models: Part 1, 
Allen-Zhu & Li 2023 

Graph path-finding 
“Towards an Understanding of 
Stepwise Inference in Transformers:
A Synthetic Graph Navigation 
Model”
Khona, Okawa, Hula, Ramesh, Nishi, Dick, 
Lubana, & Tanaka 2024

Controlled tasks are valuable!
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Prior work that learns 
the noise 
injected for diversity

Concurrent position 
paper arguing for 
injecting randomness

Empirical analysis of 
temperature sampling
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Many works 
on defining 
creativity!
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Many other works in different areas— see our related work 
section!



Thank you!
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(All diagrams in the deck were human-drawn.)

Poster:  11 a.m. – 1:30  p.m 
East Exhibition Hall A-B 
#E-2505

Gregor 
Bachmann

(Apple)

Thanks to Vansh Bansal, Gregor Bachmann, Jacob Springer, Sachin 
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Yuxiao Qu, and Ziqian Zhong for valuable early discussions and pointers.


