Multi-token prediction boosts creativity in algorithmic tasks

Vaishnavh Nagarajan* (Google Research NY), Chen Henry Wu* (CMU), Charles Ding (CMU), Aditi Raghunathan (CMU)

We'd want LLMs to creatively solve open-ended tasks

Discovery: "Are there any surprising connections between some of these molecules?"

Synthetic data: "Generate
a dataset of original
olympiad problems"

But this demands evaluating *subjective*, *unscalable* metrics including not only

Our questions: How do we precisely evaluate LLM creativity? Is the current LLM paradigm optimal for creativity? Can we improve it?

Our approach: Design *minimal open-ended algorithmic tasks* modeled after creative tasks. General setup: In all our tasks, the model must learn an underlying distribution *D* through a training set *S* of *m* independent samples. *Algorithmic creativity* is defined as fraction of generations that are *unique*, *original (not in S)*, and *coherent (in D)*.

Through this, we isolate two types of creativity in CogSci [1]:

Result 1: Multi-token learning boosts creativity over NTP

Result 2: "Hash-conditioning" improves creativity over temperature sampling

Hash-conditioning:

Intuition : Creative tasks require planning for **global constraints** ; NTP succumbs to "Clever Hans" *shortcuts* .

What's next?

- Generalize results to non-algorithmic, linguistic results
- Consider other forms of creativity
- Multi-token prediction / hash-conditioning for
 - \circ Test-time compute
 - Synthetic data generation

During training: prefix unique hash string per point
 During inference: prompt with novel hash strings

Temperature sampling

Hash-conditioning

(a) Gemma v1 (2B)

Intuition : Hash-conditioning fixes dice upfront; then, easier to plan/coordinate multiple random choices.