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OUR CONTRIBUTIONS PERFORMANCE GENERALIZATION EXPLANATION GENERALIZATION: RESULT

Interpretability has been a largely empirical field. fom . Motivation: Bounds based on complexity(#) may not capture how Theorem 2-

“simple” fis! ) . i
We establish one of the first connections between EypErn (@A) —f)T < E_E. (g0 =)+ Ps  B(Erpea)

interpretability and learning theory: Theorem 1: Test engs?ﬂﬁl;)quamy Train e&fl?:ﬂﬁlf;)qucl“’fy Comp]!eX”y| of ’r?e system
of explanations
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Test loss Train loss Explanation quality Complexity of the system
(on dataset S) (MNF) of local explanations

1. We derive a generalization bound on test performance of a

model in terms of its local explainability. Takeaway: Better generalization when explanations can nicely fit training

data that fall in a larger neighborhood.

2. We address a new question: how well does the “quality”
of local explanations generalize? Rademacher complexit
‘%(?local) = PR
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Larger neighborhood = Smaller neighborhood =

1 How complex each local
TS| explanation is argerne |

explanation is trained on more points = explanation is trained on too few points =

better generalization poorer generalization

Interpretability H Complexity H Generalization properties o
of a model of the model of the model Z (py(N*dx e [1 A/TST] How disjoint the neighborhoods /) . fx) o

Ps = Lez S| of the training points are
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BACKGROUND: LOCAL EXPLANATIONS ! ‘ I . H . | . Single common § = | | I Single common:S

Approximate a function fvia simple functions g,

in small neighborhoods V. around each x. EXPERIMENTS

Local explanations | 5 5 | 5 E L 5 E  Are there neighborhood widths s.t. pg=0(| S1%°) while Train MNF is small2 Yes!
g,
F : : : : : : e Do wider neighborhoods bring the generalization gap down?¢ Yes!
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Neighborhoods : : : , lakeaway: Better generalization when it is easier to locally approximate
f on larger neighborhoods.
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Small neighborhoods Key Tradeoff Large neighborhoods

LOCAL EXPLANATION QUALITY D e ——
MNF is small, ps is large MNF is large, pg is small

Standard measure: We propose: FUTURE WORK
Neighborhood Fidelity (NF) Mirrored Neighborhood Fidelity (MNF)

= ~pErn [(8,(x) — f(x)] E.pEn [(8Ax) — f(x))*]

Exponent of pg (top) and test & train MNF (bottom) on UCI datasets

Extend bounds to high-dimensional datasets.
EXPLANATION GENERALIZATION: MOTIVATION
Step 1: Sample Step 1: Sample 2. Explore these bounds tfor NNs.

source point x~D target point x ~ D
where explanation g, where error will be

is generated. evaluated. % . 3 Wh MNF b h
2 ! | ! . en is etter than

(source) (target) -« P ) \ ,x{ : NF in prGCficez
\ D (source) : x

('rarge'r) dOfO monifo|d) (dCITCI manifold)

Single common

Canonical approaches learn explanations Recent approaches (MAPLE [2], RL-LIM [3])
Step 2: Sample Step 2: Sample trom “infinite” data (e.g., LIME [1])! reuse finite dataset (by re-weighting it each time)! REFERENCES

target point x’ ~ N, source point x" ~ N,,

and evaluate generate explanation g,
error of g, at x". and evaluate error of g, at x.

“Why should | trust youe: Explaining the predictions of any classifier.” Marco Tulio Ribeiro,
) . — ) Sameer Singh, and Carlos Guestrin, ACM SIGKDD, 2016.
Unlike NF MNF does not evaluate fit of Finite-sample-based approaches could potentially . "Model Agnostic Supervised Local Explanations', Gregory Plumb, Denali Molitor and
: : u" . . . a Ameet S. Talwalkar, NeurlPS 2018
explona’rlons on off-manitold datal overtit their explana’rlons ' . “RL-LIM: Reinforcement learning-based locally interpretable modeling”, Jinsung Yoon,

Sercan O. Arik, and Tomas Pfister, 2019

— more amenable to theoretical CIﬂCIlYSiS What determines the quamy of these exp\anc’rions on unseen data? . ”U.niform convergence may be.uncble to explain generalization in deep learning”.
Vaishnavh Nagarajan and J. Zico Kolter, NeurlPS 2019

— more robust to il’l’GQUlOI’ off-manifold behavior Off . “Understanding deep learning requires rethinking generalization”, Chiyuan Zhang, Samy
Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals, ICLR" 17




