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We address a fundamental open question in GANs TOOLBOX: NON-LINEAR SYSTEMS RESULTS SIMULTANEOUS GRADIENT DESCENT WGAN

about the stability of the saddle point equilibrium, Consider a dynamical system 6 = h(0) for which @ is an THEOREM: Under assumpfions 1. 2. 3 the GAN system There exist simultaneous
using tools from non-linear systems theory. equilibrium pointi.e., h(0*) = 0 ' s locally exponentiz:lll),' <table 0 Cof,‘l’,','nn gradient descent WGAN

. . o e : k systems which do not
Locally exponentially stable: if for any initialization sufficiently T o T o n);cessaril converae to the
close to equilibrium, the system converges to equilibrium quickly. [1] e Jacobian at equilibrium is: negative () 4 J

GENERATIVE ADVERSARIAL NETWORKS (GANS) transpose equilibrium.
LINEARIZATION THEOREM: The equilibrium is V2 V0p.00) VoV (On.e

An increasingly popular class of generative models — models that 7 Oh(0) locally exponentially stable iff Jacobian at / THEOREM: Under similar assumptions, the .
U

)
“understand” data to output new random data. 00 |, equilibrium has eigenvalues with strictly —(VHGVQDV(GD,QG))T ~V2 V(0p,0c) negative 0 e.quilibrium of the regularized 0 columr
Formally, GANs learn distribution over the data. negative real parts. transpose simultaneous gradient descent (W)GAN rank

20f system is exponentially stable when
' | negative
7 not too large. — —

Unknown DISCRIMINATOR 6 p GENERATOR B¢
TRUE P.D.F Pdata() OUR EXTENSION: Eigenvalue can have zero real part as long as it

over INPUT DOMAIN X’ corresponds to direction within a subspace of equilibria

franspose

Key Lemma: Matrices of this form
. have eigenvalues with strictly

' negative real parts despite zero
bIOCkl ,n=0. WGAN, =025
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(even though the discriminator is not
trained to optimality!)
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Alternative stability analysis: LASALLE’S INVARIANCE PRINCIPLE
Informally, equilibrium is exponentially stable if there exists a non-
negative energy function (“Lyapunov function”) that at any time

i
7
f

/)
i

/
/

2.0

/

W
s

Known distribution over latent Generated distribution of G()G(z) either _ _ 5 = ] : j 5| ,////
space Z with P.D.F Platent (-) over X with P.D.F p () ) strictly decreases 0 o5 00 o5 Decreasing, and only U 2\ WY N\ IS

Discriminator instantaneously non-decreasing : % o 7
energy function: Distance from

equilibrium

' . L ii) remains constant only instantaneously,

. M GAN d ics f |
and is zero only at equilibrium. N dynamics for a sma

system learning a uniform
distribution.

min max V(8qg,0p)

ASSUMPTIONS
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Some of our assumptions are strong, yet they shed light on what is GRADIENT NORM BASED REGULARIZATION Co
i i ' NCLUSION
Lz npaata L (D(T))] + Eznpragens [f(—D(G(2)))) required for stability.

- _/ — 7 y
v ~ 1. 5 0 = Vo, V(0p,0c) THEORETICAL ANALYSIS OF GAN DYNAMICS USING NON-LINEAR

How real x is, How “generated” (5 (2) looks Global equilibrium is realizable. SYSTEMS: despite lack of concave-convexity, GANs are locally
according to the discriminator according to the discriminator ‘ 2 ' . » ' .
p,. () = Paatal’) 0 = =V, V(0p,0c) —1Ve. ||Ve,V(0D,0c)| stable under right conditions — perhaps why they work so well in
G

Traditional GAN Wasserstein GAN (WGAN) practice! Regularizer can provably enhance local stability.
1
0 =108 (15 o) f(t) =t

To use non-linear systems

Dy; (x) =0 forall z Generator minimizes (the objective + the norm of the

discriminator’s gradient).
hp(p) = ﬂdata[Dgn(fE)] 2

Repeat simultaneously: b (0 H . Vo Do ()] —E, (Vo Do ( )]Hz
tools, we update both . el(Ze) paatal Vb Do po,, (Voo Doy (2
P /\ Op = VQDV(Qg,QD)

parameters
simultaneously (not
alternately) and .
infinitesimally for the true unti p =0

caruilib i | We assume at equilibrium, these locally convex functions are : I
(not empirical) objective. ] | Oc =0 locally strongly convex — implying a locally unique equilibrium. e .

1. Makes Jacobian “more stable” OPEN QUESTIONS

0p=0} 2. Provides foresight to the generator: When norm of * Analyze other objectives and optimization techniques: unrolled
fime derivative - A notion of how “different” the parameters 6, 0, are from discriminator’s gradient is minimized, discriminator cannot GAN:s, f-GAN ...
N~ ¢ =—Vo.V(0c,0p)

equilibrium discriminator 67, and generator (7, respectively. improve itself much to outdo generator. . . T
* Relaxing some assumptions: Non-realizability: when
Generated

. - discriminator is not linear in parameters? Without strong
' points .. .
" curvature? Intuitively: slower convergence, but still stable...

Original . /
‘ | [ [ ] [ ] [
. * Global convergence, at least for linear discriminator and

GAN

Proving GAN stability is hard because of concave- Vo,hp(0D) s, >0 Vi ha(0c)|,. =0

G

/
‘t/\ Real generator!
| points

concave-ity drblfrdrlly close to equllbrlum, ‘?‘ ?‘ * When do equilibria satisfying our conditions exist?

even for linear models! Vi,Vp,05)< 0 Vi Ve V0,06, o > O

Other proofs [3,4] require e
discrimipator to be trainec! more often Relaxation: Zero eig”envslues H. K Khalil. Nondinear Systems. Prentice-Hall, New Jersey, 1996
— eftectively, closer to optimality, _ must correspond to “flat o . . . L. Metz, et al., Unrolled generative adversarial networks. (ICLR 2017)
bringing system closer to pure S directions o\ y 4 3. Similar to 1-unrolled [2] approximation of the pure . M. Heusel et al., GANs trained by a TTUR converge to a local Nash
minimization. N F within a subspace of equilibria. “ . / direction minimization problem. equilibrium (NIPS 2017)

strongly convex . 1. J. Goodfellow et al., Generative Adversarial Networks (NIPS 2014)
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