Overview

We present a method for *accurately* estimating generalization of deep network and we theoretically prove why our method works remarkably well.

Predicting test performance remains a fundamental & challenging problem in deep learning.

- St and
- We demonstrate that test error can be accurately predicted by running two random seeds of SGD on the same data and measuring their disagreement on unlabeled data.
- We prove that disagreement equals generalization error because deep SGD ensembles are well-calibrated.
- Overall, we show a new connection between generalization and calibration

Background

Let h₁ and h₂ be two hypotheses sampled from from the **distribution** of random SGD runs.

$$Y = \{0, 1, 1, 0, \dots\}$$
$$h_1(X) = \{1, 1, 1, 0, \dots\}$$

$$h_1(X) = \{1, 1, 1, 0, \dots\}$$

 $h_2(X) = \{1, 0, 1, 0, \dots\}$

Test error measures the difference between prediction and the ground truth.

Disagreement measures the difference between predictions of two models (no ground truth reqd.)

Assessing Generalization of SGD via Disagreement

Carnegie Mellon University

An Intriguing Observation

Disagreement (x-axis) tracks test error (y-axis) extremely well across many architectures & datasets!

[2] showed this when h₂ was learned on an *independent* dataset. But we show it is enough to just retrain w/ different random seed (i.e., reorder/reinitialize).

Why is this surprising?

The points could lie anywhere between x = 0 and y=0.5xbut they are concentrated around y=x.

Even works in Out-of-Distribution scenarios!

Our technique works well for pre-trained models under domain shift on the PACS dataset [1].

Yiding Jiang*, Vaishnavh Nagarajan*, Christina Baek, J. Zico Kolter

Generalization Disagreement Equality

Theorem

If the ensemble of models found by SGD is well-calibrated, then:

 $\mathbb{E}_{h \sim \mathcal{H}} \left[\texttt{TestErr}(h) \right] = \mathbb{E}_{h', h \sim \mathcal{H}} \left[\texttt{Dis}(h, h') \right]$

Expected Test Error over models sampled from SGD

Expected **Disagreement** over pairs of models sampled from SGD

- Proves the observation in expectation rather than over a single draw of two models.
- Applies to any data distribution, model & algorithm!

Calibration & Ensembles

Ensemble predicts average of one-hot predictions across different SGD runs:

$$\tilde{h}(X) = \mathbb{E}_{h \sim \mathcal{H}} \left[h(X) \right]$$

What is a **well-calibrated model?**

Partition the distribution based on model's confidence level.

Data Distribution

A well-calibrated model has accuracy q on D_{q} .

$$P(Y = k \mid \tilde{h}_k(X) = q) = q$$

I.e., it is neither over- nor under-confident.

Key proof idea for theorem: On D

Disagreement = Test error = 2q(1-q).

Empirical Verification

Soft-max ensembles are known to have well-calibrated *top-class* predictions [3].

We demonstrate that even *one-hot* ensembles are well-calibrated on average across all predictions.

x-axis: the true probability of the data y-axis: the confidence of the model

CIFAR 10

CIFAR 10 2k

CIFAR I 00

Future works

- In practice, GDE surprisingly holds even for a single (h1, h2) pair even though 2-ensembles are not calibrated! Why?
- Why are deep SGD ensembles well-calibrated? More generally, under what conditions?
- How else can unlabeled data be leveraged to estimate generalization in & out of distribution?

Reference

[1] Deeper, broader and artier domain generalization. Li et al. [2] Distribution Generalization: A New Kind of Generalization. Nakkiran & Bansal.

[3] Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. Lakshminarayanan et al.