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Assessing Generalization of SGD via Disagreement
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We present a method for accurately estimating
generalization of deep network and we theoretically
prove why our method works remarkably well.
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Predicting test performance
remains a fundamental &
challenging problem in deep
learning.

e \We demonstrate that test error can be accurately
predicted by running two random seeds of SGD on
the same data and measuring their disagreement on
unlabeled data.

e \We prove that disagreement equals generalization
error because deep SGD ensembles are
well-calibrated.

e QOverall, we show a new connection
between generalization and
calibration

Background

Let h, and h, be two
hypotheses sampled from
from the distribution of /‘
random SGD runs.

hq

Test error measures the
difference between
prediction and the ground
truth.
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Y ={0,1,1,0,...}
hi(X) = {1,1,1,0,...}

Disagreement measures
hl(X) . {17 1,1,0,.. } the difference between

ho(X) =1{1,0,1,0,...} predictions of two models
(no ground truth reqd.)
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An Intriguing Observation

Disagreement (x-axis) tracks test error (y-axis)
extremely well across many architectures & datasets!
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[2] showed this when h, was learned on an independent
dataset. But we show it is enough to just retrain w/
different random seed (i.e., reorder/reinitialize).

Why is this surprising?

The points could lie anywhere between x = 0 and y=0.5x
but they are concentrated around y=x.
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Even works in Out-of-Distribution scenarios!

Our technigue works well for pre-trained models under
domain shift on the PACS dataset [1].
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Generalization Disagreement Equality

Theorem

If the ensemble of models found by SGD is
well-calibrated, then:

DY NEY [TestErr(h)] = ":h’,hN’H [Dis(h, h/)]

Expected
Disagreement over
pairs of models
sampled from SGD

Expected Test Error over
models sampled
from SGD

e Proves the observation in expectation rather than
over a single draw of two models.

e Applies to any data distribution, model & algorithm!

Calibration & Ensembles

=nsemble predicts average of one-hot
predictions across different SGD runs:

hX) = Epoy [A(X)]

What is a well-calibrated model?

Partition the distribution based on
model’s confidence level.

D, = (X,Y) | E(X) — q

A well-calibrated model has
accuracy g on Dq.
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Data Distribution

Key proof idea for theorem: On Dq

Disagreement = Test error = 2q(1-9).

Empirical Verification

Soft-max ensembles are known to have
well-calibrated top-class predictions [3].

We demonstrate that even one-hot ensembles
are well-calibrated on average across all
predictions.

x-axis: the true probability of the data
y-axis: the confidence of the model
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e In practice, GDE surprisingly holds even for a single
(h1, h2) pair even though 2-ensembles are not
calibrated! Why?

e \Why are deep SGD ensembles well-calibrated? More
generally, under what conditions?

e How else can unlabeled data be leveraged to
estimate generalization in & out of distribution?
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