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Lifelong Learning … 

Building agents that learn like humans do... 

Solve a series of  related tasks efficiently by transferring knowledge 
through representations learned from previously-learned tasks. 

Time 
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… in costly feature spaces 

Solve a series of  related tasks efficiently by transferring knowledge 
through representations learned from previously-learned tasks. 

Diabetes risk 
of  a patient 

Heart disease risk 
of  a patient 

Time 

Our goal: Feature-efficient (poly-time) lifelong learning algorithms 
for decision trees/lists, and real-valued polynomials with 

theoretical guarantees. 
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Related work 

•  Knowledge transfer:  
– Multi-task learning  
– Lifelong learning (mostly empirical) 

•  Theoretical: Balcan et al. (2015), Pentina & Urner (2016) 
•  Sample/computational efficiency  

•  Budgeted learning 
– predefined budget on feature evaluations 

 

Very little theoretical study of  lifelong learning. 
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Outline 

•  Introduction 
•  Model  
•  Approach 
•  Main Results: 
•  Decision trees 

•  More results: 
•  Agnostic model 
•  Lower bounds 
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Model 
•  Learn a sequence of  m (related) tasks/target functions, 

g(j) from data of S samples each.  
•  Targets can be adversarially chosen. 
•  Each target maps from a common space of  N features 
•  Focus in this talk:  
–  Boolean decision trees of  depth d 
–  Each target = output of  standard algorithm on dataset 

g(1) g(2) g(m) (Unknown) 
Targets 

Time 

: {0,1}N à {0,1} : {0,1}N à {0,1} : {0,1}N à {0,1} … 
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Cost 
•  Total number of  feature evaluations on training data across all m 

tasks 
•  Worst case cost: SmN by learning all targets “from scratch”: 
 No. of  samples/task (S) x No .of  targets (m) x No. of  features (N) 

Data 
S x N matrices 

 = 1 unit cost 

g(1) g(2) g(m) (Unknown) 
Targets 

Time 

: {0,1}N à {0,1} : {0,1}N à {0,1} : {0,1}N à {0,1} … 
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Target Relations 

Example: A decision tree metafeature is a decision tree substructure 
without leaves 

A metafeature is a higher level concept i.e., higher level 
“building block” of  a target function  
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more  … 
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Target Relations 

Example: A decision tree metafeature is a decision tree substructure 
without leaves 

A metafeature is a higher level concept i.e., higher level 
“building block” of  a target function  

Our belief  is that the targets can be described using a common 
unknown set      of  K metafeatures. 

No. of  metafeatures (K) << No. of  features (N) and no. of  targets (m) 
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Outline 

•  Introduction 
•  Model  
•  Approach 
•  Main Results: 
•  Decision trees 

•  More results: 
•  Agnostic model 
•  Lower bounds 
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Lifelong Learning Protocol 

Targets 

Learned  
representation =	

g(3)? 

Hypothesized metafeatures 

Given subroutines UseRep and ImproveRep, for each task j 
•  Try UseRep i.e., use     to evaluate very few features (<< N) per 

datapoint and learn a model that fits data. 
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Lifelong Learning Protocol 

Given subroutines UseRep and ImproveRep, for each task j 

g(4)? Targets 

Learned  
representation =	

Hypothesized metafeatures 

Given subroutines UseRep and ImproveRep, for each task j 
•  Try UseRep i.e., use     to evaluate very few features (<< N) per 

datapoint and learn a model that fits data. 
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Lifelong Learning Protocol 

Targets 

Learned  
representation =	

Hypothesized metafeatures 

Given subroutines UseRep and ImproveRep, for each task j 
•  Try UseRep i.e., use     to evaluate very few features (<< N) per 

datapoint and learn a model that fits data. 
•  If  failed: learn from scratch (evaluate all N features) and 

ImproveRep i.e., update  
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Lifelong Learning Protocol 

Goal: Design ImproveRep and UseRep subroutines. 

Targets 

Learned  
representation =	

Hypothesized metafeatures 
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Outline 

•  Introduction 
•  Model  
•  Approach 
•  Main Results: 
•  Decision trees 

•  More results: 
•  Agnostic model 
•  Lower bounds 
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Decision Trees: Result 

Learning all targets from scratch costs S �O(mN)  
but recall: 

 no. of  targets (m), no. of  features (N) >> no. of  metafeatures (K) 
è mN >> KN + mK = K(N+m) 

 

Theorem (Decision trees): UseRep and ImproveRep together 
1. learn at most K trees from scratch, 
2. on the rest UseRep evaluates at most O(Kd) features per 
example è cost at most S �O(KN+mKd)  

Model: m tasks, N features, K metafeatures, d depth, S samples/task 

Combinatorial challenge: Given many trees, find a small  
representation that describes them! 
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Decision Trees: UseRep 

x1  

= x3 

? 

x3 

x7 

x3  

x5 

x10 
… 

Model: m tasks, N features, K metafeatures, d depth, S samples/task 

UseRep Goal: Learn a target g with few feature evaluations 
(<<N) per point if  g can be described using  
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Decision Trees: UseRep 

Key idea: To determine feature with best split at a node,  use      to 
carefully select        features to be evaluated on data. 

x1  

x3 

? 
x5 x7 

= 

x3 

x7 

x3  

x5 

x10 
… 

Model: m tasks, N features, K metafeatures, d depth, S samples/task 

Examine only: 

{              } 

A. UseRep evaluates O(      + d) features per example.  |F̃ |UseRep Goal: Learn a target g with few feature evaluations 
(<<N) per point if  g can be described using  
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Decision Trees: ImproveRep 

ImproveRep Goal: When UseRep fails, extract useful 
metafeature(s) from target learned from scratch. 

Model: m tasks, N features, K metafeatures, d depth, S samples/task 

A. UseRep evaluates O(      + d) features per example.  |F̃ |

Key Idea: Pick a path UseRep couldn’t learn.  

Partial tree learned from  UseRep Correct tree from scratch 

x1  

x2 
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x3 

01

x1  

x6 x3 
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Decision Trees: ImproveRep 

ImproveRep Goal: When UseRep fails, extract useful 
metafeature(s) from target learned from scratch. 

Model: m tasks, N features, K metafeatures, d depth, S samples/task 

A. UseRep evaluates O(      + d) features per example.  |F̃ |

Key Idea: Pick a path UseRep couldn’t learn. Add all d subtrees 
from this path as metafeatures.  

x1  

x2 x3 x2 
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Decision Trees: ImproveRep 
Model: m tasks, N features, K metafeatures, d depth, S samples/task 

A. UseRep evaluates O(      + d) features per example.  |F̃ |
B. ImproveRep adds d metafeatures in each call. 

Theorem (Decision trees): UseRep and ImproveRep together 
1. learn at most K trees from scratch, 
2. on the rest UseRep evaluates at most O(Kd) features per 
example è cost at most S �O(KN+mKd)  

PROOF IDEA:  
•  One of  the d metafeatures “approximately” recovers a new 

metafeature from underlying representation      . 
•  After K calls of  ImproveRep, UseRep never fails. 
•  Learned representation      has  O(Kd) metafeatures 
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Decision Trees: ImproveRep 
Model: m tasks, N features, K metafeatures, d depth, S samples/task 

A. UseRep evaluates O(      + d) features per example.  |F̃ |
B. ImproveRep adds d metafeatures in each call. 

Theorem (Decision trees): UseRep and ImproveRep together 
1. learn at most K trees from scratch, 
2. on the rest UseRep evaluates at most O(Kd) features per 
example è cost at most S �O(KN+mKd)  

More results: 
•   for decision lists O(S �(KN+m(K2+d))) 
•   and for real-valued monomials/polynomials O(S �(KN+mK))) 
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Outline 

•  Introduction 
•  Model  
•  Approach 
•  Main Results: 
•  Decision trees 

•  More results: 
•  Agnostic model 
•  Lower bounds 
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More results 
Agnostic model: Learner faces m + r targets where only 
some m of  which are related through K metafeatures. 

O(   rKNm+mK) 

We design three algorithms: 

A better balance 
More targets 
from scratch; 
Smaller  
O(rKN+mK) 
 

F̃

Fewer targets 
from scratch; 
Larger  
O(KN+m(K+r)) 

F̃

Lower bounds on feature evaluations: When no. of  
unrelated targets r is  
•  sufficiently small: our algorithms optimal in terms of  

N, m and K:  
•  too large: lifelong learning is meaningless  

⌦(KN +mK)
⌦(mN)
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Conclusion 
New insights into the lifelong learning paradigm: 
•  We propose a new metric of  efficiency for costly feature 

spaces. 
•  We address combinatorial challenges in designing poly-time 

algorithms for decision trees/lists, monomials/polynomials. 

Open questions: 
•  How do we recover the true decision tree 

representation exactly? How hard is it?  
•  Tighten the gap between lower and upper bounds for 

intermediate values of  r (no. of  bad targets). 
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Thank you!  
Questions? 
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