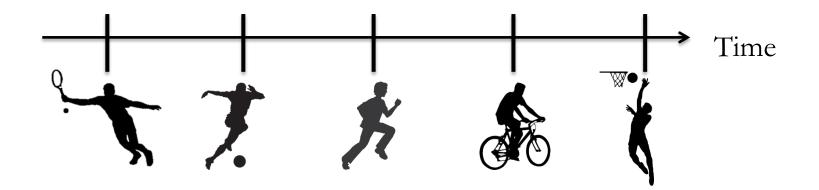
Lifelong Learning in Costly Feature Spaces

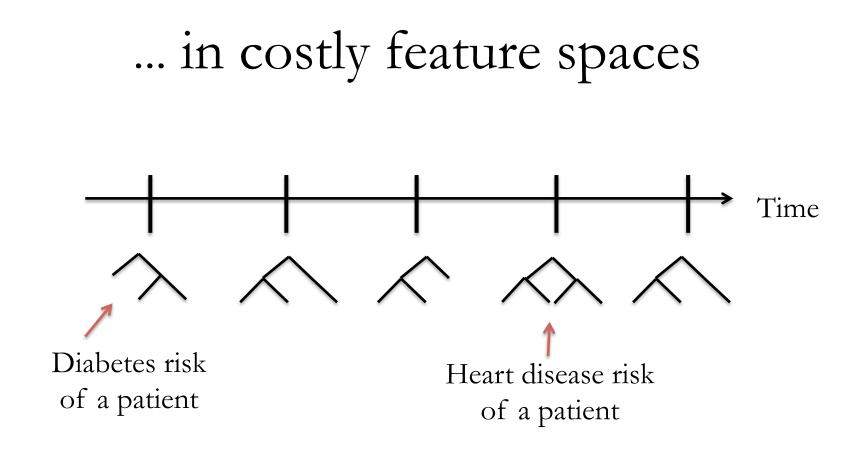
Maria-Florina Balcan, Avrim Blum, Vaishnavh Nagarajan

Lifelong Learning ...



Building agents that learn like humans do...

Solve a series of related tasks efficiently by transferring knowledge through representations learned from previously-learned tasks.



Our goal: Feature-efficient (poly-time) lifelong learning algorithms for decision trees/lists, and real-valued polynomials with theoretical guarantees.

Related work

- Knowledge transfer:
 - Multi-task learning
 - Lifelong learning (mostly empirical)
 - Theoretical: Balcan et al. (2015), Pentina & Urner (2016)
 - Sample/computational efficiency

Very little theoretical study of lifelong learning.

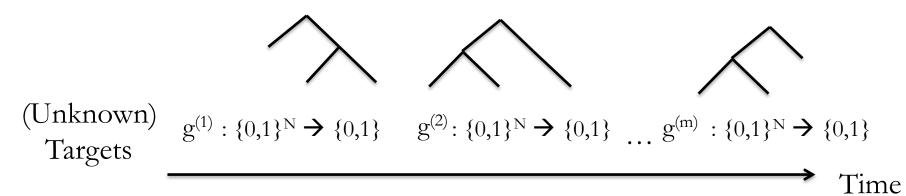
- Budgeted learning
 - predefined budget on feature evaluations

Outline

- Introduction
- Model
- Approach
- Main Results:
 - Decision trees
- More results:
 - Agnostic model
 - Lower bounds

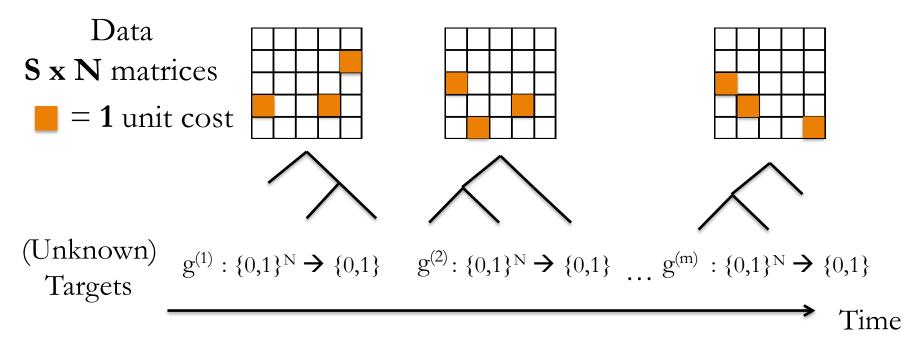
Model

- Learn a sequence of m (related) tasks/target functions, g^(j) from data of S samples each.
- Targets can be adversarially chosen.
- Each target maps from a common space of **N** features
- Focus in this talk:
 - Boolean decision trees of depth d
 - Each target = output of standard algorithm on dataset



Cost

- Total number of feature evaluations on training data across all m tasks
- Worst case cost: SmN by learning all targets "from scratch":
 No. of samples/task (S) x No .of targets (m) x No. of features (N)



Target Relations

A metafeature is a higher level concept i.e., higher level "building block" of a target function

Example: A decision tree metafeature is a decision tree substructure without leaves



Target Relations

A metafeature is a higher level concept i.e., higher level "building block" of a target function

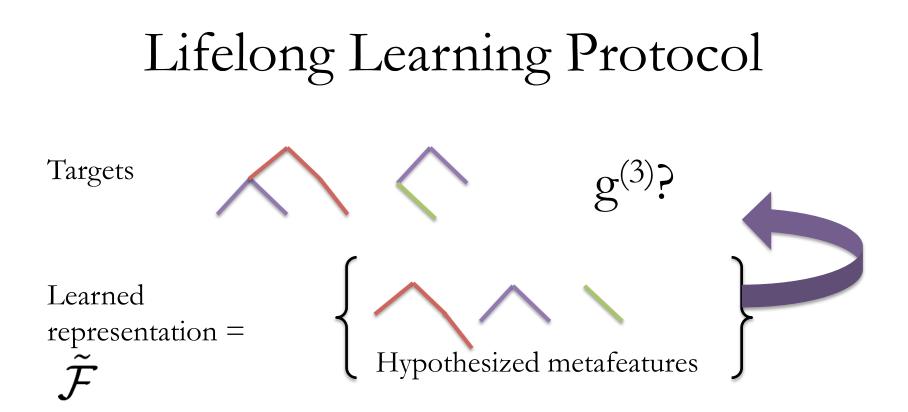
Example: A decision tree metafeature is a decision tree substructure without leaves

Our belief is that the targets can be described using a common unknown set \mathcal{F} of **K** metafeatures.

No. of metafeatures $(\mathbf{K}) \leq$ No. of features (\mathbf{N}) and no. of targets (\mathbf{m})

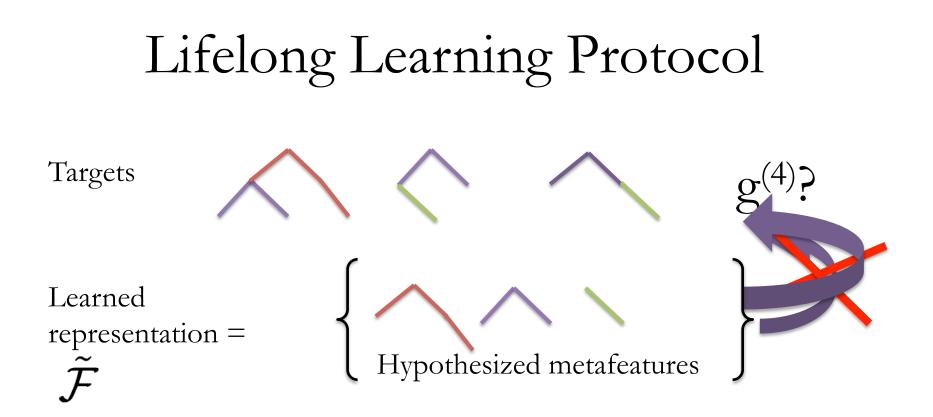
Outline

- Introduction
- Model
- Approach
- Main Results:
 - Decision trees
- More results:
 - Agnostic model
 - Lower bounds



Given subroutines UseRep and ImproveRep, for each task j

Try UseRep i.e., use *F* to evaluate very few features (<< N) per datapoint and learn a model that fits data.



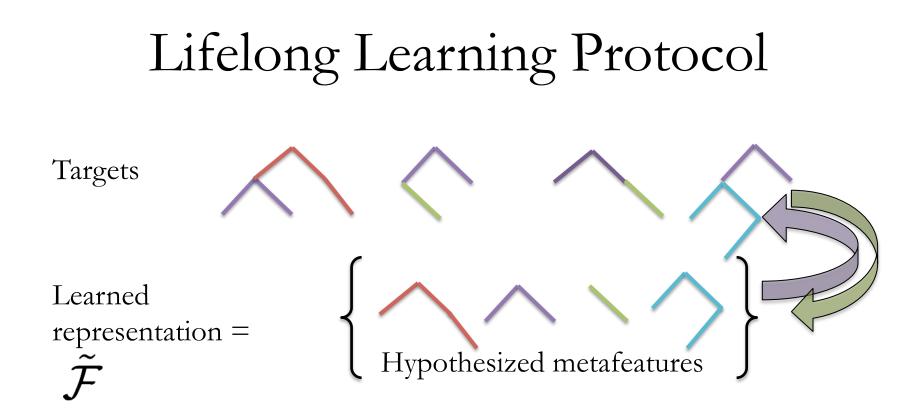
Given subroutines UseRep and ImproveRep, for each task j

Try UseRep i.e., use *F* to evaluate very few features (<< N) per datapoint and learn a model that fits data.



Given subroutines UseRep and ImproveRep, for each task j

- Try UseRep i.e., use *F* to evaluate very few features (<< N) per datapoint and learn a model that fits data.
- If failed: learn from scratch (evaluate all N features) and ImproveRep i.e., update $\tilde{\mathcal{F}}$



Goal: Design ImproveRep and UseRep subroutines.

Outline

- Introduction
- Model
- Approach
- Main Results:
 - Decision trees
- More results:
 - Agnostic model
 - Lower bounds

Decision Trees: Result

Model: m tasks, N features, K metafeatures, d depth, S samples/task

Theorem (Decision trees): UseRep and **ImproveRep** together 1. learn at most **K** trees from scratch,

2. on the rest **UseRep** evaluates at most O(Kd) features per example \rightarrow cost at most $S \cdot O(KN+mKd)$

Learning all targets from scratch costs **S** •**O(mN)** but recall:

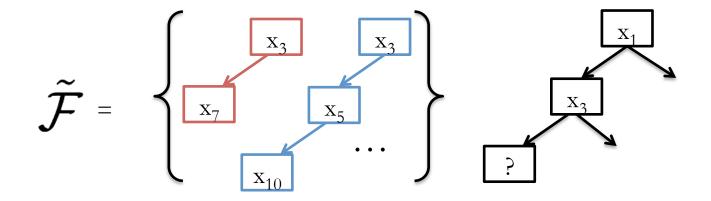
no. of targets (m), no. of features (N) >> no. of metafeatures (K) $\rightarrow mN >> KN + mK = K(N+m)$

Combinatorial challenge: Given many trees, find a small representation that describes them!

Decision Trees: UseRep

Model: m tasks, N features, K metafeatures, d depth, S samples/task

UseRep Goal: Learn a target \mathbf{g} with few feature evaluations (<<N) per point if \mathbf{g} can be described using $\tilde{\mathcal{F}}$

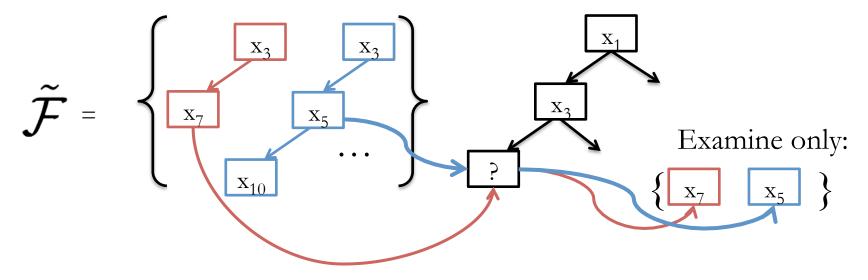


Decision Trees: UseRep

Model: m tasks, N features, K metafeatures, d depth, S samples/task

UseRep Goal: Learn a target g with few feature evaluations (<<N) per point if g can be described using $\tilde{\mathcal{F}}$

Key idea: To determine feature with best split at a node, use $\tilde{\mathcal{F}}$ to carefully select $|\tilde{\mathcal{F}}|$ features to be evaluated on data.

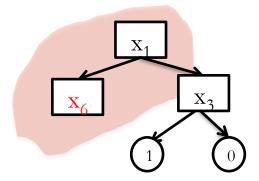


Model: m tasks, N features, K metafeatures, d depth, S samples/task A. UseRep evaluates $O(|\tilde{\mathcal{F}}| + d)$ features per example.

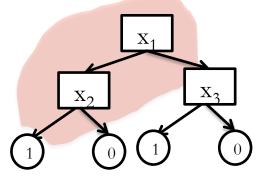
ImproveRep Goal: When UseRep fails, extract useful metafeature(s) from target learned from scratch.

Key Idea: Pick a path UseRep couldn't learn.

Partial tree learned from UseRep



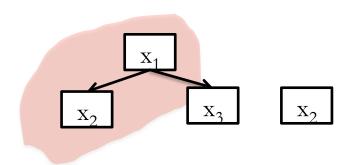
Correct tree from scratch



Model: m tasks, N features, K metafeatures, d depth, S samples/task A. UseRep evaluates $O(|\tilde{\mathcal{F}}| + d)$ features per example.

ImproveRep Goal: When UseRep fails, extract useful metafeature(s) from target learned from scratch.

Key Idea: Pick a path UseRep couldn't learn.



Model: m tasks, N features, K metafeatures, d depth, S samples/task

A. UseRep evaluates $O(|\tilde{\mathcal{F}}| + d)$ features per example.

B. ImproveRep adds **d** metafeatures in each call.

Theorem (Decision trees): UseRep and **ImproveRep** together 1. learn at most **K** trees from scratch,

2. on the rest UseRep evaluates at most O(Kd) features per

example \rightarrow cost at most **S** •**O**(**KN**+**mKd**)

PROOF IDEA:

- One of the **d** metafeatures "approximately" recovers a new metafeature from underlying representation .
- After K calls of ImproveRep, UseRep never fails.
- Learned representation $\tilde{\mathcal{F}}$ has **O(Kd)** metafeatures

Model: m tasks, N features, K metafeatures, d depth, S samples/task

A. UseRep evaluates $O(|\tilde{\mathcal{F}}| + d)$ features per example.

B. ImproveRep adds **d** metafeatures in each call.

Theorem (Decision trees): UseRep and **ImproveRep** together 1. learn at most **K** trees from scratch,

2. on the rest UseRep evaluates at most O(Kd) features per

example \rightarrow cost at most **S** •**O**(**KN**+**mKd**)

More results:

- for decision lists **O(S** •(KN+m(K²+d)))
- and for real-valued monomials/polynomials **O(S •(KN+mK)))**

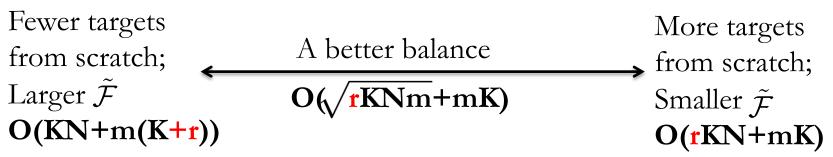
Outline

- Introduction
- Model
- Approach
- Main Results:
 - Decision trees
- More results:
 - Agnostic model
 - Lower bounds

More results

Agnostic model: Learner faces **m** + **r** targets where only *some* **m** of which are related through **K** metafeatures.

We design three algorithms:



Lower bounds on feature evaluations: When no. of unrelated targets **r** is

- sufficiently small: our algorithms optimal in terms of N, m and K: $\Omega(KN + mK)$
- too large: lifelong learning is meaningless $\Omega(mN)$

Conclusion

New insights into the lifelong learning paradigm:

- We propose a new metric of efficiency for costly feature spaces.
- We address combinatorial challenges in designing poly-time algorithms for decision trees/lists, monomials/polynomials.

Open questions:

- How do we recover the true decision tree representation exactly? How hard is it?
- Tighten the gap between lower and upper bounds for intermediate values of **r** (no. of bad targets).

Thank you! Questions?