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To explain generalization in deep learning, we 
highlight the need to study the effective model 

capacity for a given initialization, and argue that 
distance from initialization plays a key role in 

generalization.

EMPIRICAL EVIDENCE

THEORETICAL EVIDENCE
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ON INITIALIZATION-INDEPENDENT NORMS

CONCLUSION AND OPEN QUESTIONS

GENERALIZATION IN DEEP LEARNING

How do large deep networks learn simple patterns from 
real-world data sets even though they can memorize 

randomly labeled data sets of same size? [1] 

What does not happen What does happen

Intuitively: functions learned on two different random 
draws of training sets (shown in red and black) from the 
same distribution are “similar” to each other.

Active area of research over the last year and different 
directions of exploration:

KNOWN APPROACHES

I. Solutions lie in regions of flat minima  
II. Algorithmic stability: how does algorithm react to 

change in training datapoint? 
III. Implicit regularization offered by SGD: What is it?

Key question: How does stochastic gradient descent (SGD) 
lead to network-size-independent generalization behavior?

[2] investigate different norms of the final network — no 
norm conclusively explains generalization.

EFFECTIVE MODEL CAPACITY FOR A GIVEN INITIALIZATION

The set of hypotheses explored 
on different random draws of m 
training points w.h.p for a given

random 
initialization

distribution algorithm

It is sufficient to bound the learning-theoretic complexity of:

Our conjecture: For a fixed initialization, the effective capacity of SGD is 
contained in an L2 ball around the initialization, with radius independent of H 

PROBLEM SETTING

We focus on networks of d hidden layers (d>1), with 
H hidden ReLu units in each hidden layer. The weights 
are initialized with Xavier initialization, and biases 
initialized to zero.

(INFORMAL) LEMMA: An L2 ball of H-independent radius around 
a Xavier initialization has some nice properties (with high 
probability): 
1. The output of the network can be bounded independent of H 
2. Gradients with respect to weights can be bounded 

independent of H.

THEOREM 1: The Empirical Rademacher Complexity of the 
L2 ball of radius r for a linear network can be bounded 
independent of number of hidden units H:

PROPOSITION: A system with initial (non-negative) loss L, that takes 
infinitesimal gradient descent steps at each time instant until the 
norm of its gradient diminishes below a threshold c, moves a 
distance of at most L/c i.e., independent of no. of parameters.

The distance from initialization norm was in fact used in [3] to arrive at 
non-vacuous generalization bounds.

Why can’t L2 norm of the weights                    [2] explain 
generalization? 

PROPOSITION: Even though the 
untrained network has H-
independent generalization error 
of                  its L2 norm grows 
as              , so the existing 
generalization error bounds from 
[4]  are H-dependent.

Some papers, including [2] study the spectral norm 
but if distance-from-initialization is H-independent the, it implies spectral 
norm is H-independent too.

Thus regularization of distance from initialization is more powerful 
than the regularization of the spectral norm.

PROPOSITION:

The effective capacity of the model for a given initialization is limited by 
distance from initialization.  
A. Is this observation sufficient? Can we extend H-independent 

generalization error in Theorem 1 to non-linear ReLu networks?  

B.Or, a more precise 
characterization? E.g: effective 
capacity can be divided into 
poly(m) continuous subsets such 
that w.h.p over a draw of m 
samples, traversing within each 
parameter subset, no/only few 
non-linearities is crossed?

EMPIRICAL EVIDENCE (CONTD.)

Minimizing squared error loss (until a fixed threshold) on MNIST (top) and 
CIFAR (below) demonstrates that distance from initialization is indeed 
regularized.

The distance from initialization grows more rapidly with m when minimizing 
squared error loss on completely random labels. MNIST (top) and CIFAR (below):

Progressively increasing noise in the labels, results in greater distance 
traveled from initialization to reach the same loss threshold.

We measure Empirical Empirical Rademacher Complexity: Sample 
random label vectors, and use SGD to maximize the correlation with 
these labels.   
The increase with no. of hidden units is mild, and at most logarithmic,  

less pronounced for larger datasets. 


