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These slides are adapted from a 1hr talk I presented at 
CMU for a general CS audience.



A goal of AI:  “Understand” data

Build an agent that generates new data (which it does by 
learning an abstract representation of training data)
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GENERATIVE ADVERSARIAL NETWORKS (GANS)



TRAINING DATA

TRUE DISTRIBUTION 
(over e.g., cat images)

GENERATIVE ADVERSARIAL NETWORKS (GANS)

(Implicitly)  
LEARNED DISTRIBUTION

NEW DATA

Agent

A generative model
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PAST WORK

• GANs were introduced by Goodfellow et al., ’14 

• Many, many variants: Improved GAN, WGAN, Improved 
WGAN, Unrolled GAN , InfoGAN MMD-GAN, McGAN,  f-GAN, 
Fisher GAN, EBGAN, …  

• Wide-ranging applications: image generation (DCGAN), 
text-to-image generation (StackGAN), super-resolution (SRGAN) 
…
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PAST WORK

“One hour of imaginary celebrities” [Karras et al., ‘17]
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

GAN OPTIMIZATION: Parameters of two models are iteratively 
updated (in a standard way) to find “equilibrium” of a “min-

max objective”.

min
✓G

V (✓G, ✓D)max

✓D

✓D✓G

like a game
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✓G

 

 

GENERATOR

DISCRIMINATOR

✓D

tries its best to tell 
apart generated 
images from real 

images

tries its best to 
generate images 
that discriminator 

finds real



We study dynamics of standard GAN 
optimization:  

Is the equilibrium “locally stable”?  
When it is not, how do we make it stable?
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OUTLINE

GAN Formulation 

Toolbox: Non-linear systems 

Challenge: Why is proving stability hard? 

Main result 

Stabilizing WGANs
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GAN FORMULATION

Random 
input

GENERATOR ✓G
: Z ! XG✓GX

e.g., R32⇥32

Unknown  
TRUE P.D.F  
over INPUT DOMAIN  

pdata(·)

Generated distribution of  
over      with P.D.F  X p (·)✓G

(z)G✓GZ
Known distribution over latent 
space       with P.D.F platent(·)
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DISCRIMINATOR ✓D

: X ! RD✓D



GENERATORDISCRIMINATOR ✓G✓D

X

Unknown  
TRUE P.D.F  
over INPUT DOMAIN 
  

: X ! R G✓G: Z ! Xpdata(·)

p (·)✓Ginducing P.D.F  

Discriminator’s objective: Tell real and generated data apart

D✓D
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Random 
input

GAN FORMULATION

(x) > 0D✓D

(x) < 0D✓D

(x) = 0D✓D

  real
generated

equally both

thinks     is:D✓D x

e.g., R32⇥32



GENERATORDISCRIMINATOR ✓G✓D

X

Unknown  
TRUE P.D.F  
over INPUT DOMAIN 
  

: X ! R G✓G: Z ! Xpdata(·)

p (·)✓Ginducing P.D.F  

Discriminator’s objective: Tell real and generated data apart

D✓D
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Random 
input

GAN FORMULATION

V (✓G, ✓D)max

✓D

How real x is, 
according to the discriminator

How “generated”           looks 
according to the discriminator

(z)G✓G

E
x⇠pdata [f(D(x))] + E

z⇠platent [f(�D(G(z)))]D✓DG✓GD✓D=

e.g., R32⇥32



GENERATORDISCRIMINATOR ✓G✓D

X

Unknown  
TRUE P.D.F  
over INPUT DOMAIN 

pdata(·)

p (·)✓Ginducing P.D.F  

Generator’s objective: Generate data that even the best discriminator 
can’t tell apart from real data
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Random 
input

GAN FORMULATION

min
✓G

??

: X ! R G✓G: Z ! XD✓D

V (✓G, ✓D)max

✓D

How real x is, 
according to the discriminator

How “generated”           looks 
according to the discriminator

(z)G✓G

E
x⇠pdata [f(D(x))] + E

z⇠platent [f(�D(G(z)))]D✓DG✓GD✓D=

e.g., R32⇥32



GENERATORDISCRIMINATOR ✓G✓D

X

Unknown  
TRUE P.D.F  
over INPUT DOMAIN 

pdata(·)

p (·)✓Ginducing P.D.F  

Generator’s objective: Generate data that even the best discriminator 
can’t tell apart from real data
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Random 
input

GAN FORMULATION

min
✓G

??

: X ! R G✓G: Z ! XD✓D

V (✓G, ✓D)max

✓D

How real x is, 
according to the discriminator

How “generated”           looks 
according to the discriminator

(z)G✓G

E
x⇠pdata [f(D(x))] + E

z⇠platent [f(�D(G(z)))]D✓DG✓GD✓D

Traditional GAN  

f(t) = log

✓
1

1 + exp(�t)

◆
f(t) = t

Wasserstein GAN (WGAN)

=

e.g., R32⇥32



GENERATORDISCRIMINATOR ✓G✓D

X

Unknown  
TRUE P.D.F  
over INPUT DOMAIN 

pdata(·)

p (·)✓Ginducing P.D.F  

 SOLUTION: Generator matches true distribution and discriminator cannot 
tell apart data from either. How do we find this solution?
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Random 
input

GAN FORMULATION

??

: X ! R G✓G: Z ! XD✓D

min
✓G

V (✓G, ✓D)max

✓D

How real x is, 
according to the discriminator

How “generated”           looks 
according to the discriminator

(z)G✓G

E
x⇠pdata [f(D(x))] + E

z⇠platent [f(�D(G(z)))]D✓DG✓GD✓D=

e.g., R32⇥32



GAN OPTIMIZATION

V (✓G, ✓D)max

✓D
min
✓G

We consider: infinitesimal, simultaneous gradient 
ascent/descent updates

until 
equilibrium: 

Repeat simultaneously:

✓̇D = r✓DV (✓G, ✓D)

✓̇G = �r✓GV (✓G, ✓D)

✓̇G = 0

✓̇D = 0

time derivative
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OUTLINE

GAN Formulation 

Toolbox: Non-linear systems 

Challenge: Why is proving stability hard? 

Main result 

Stabilizing WGANs
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LOCALLY EXPONENTIALLY STABLE

✓̇ = h(✓)Consider a dynamical system                  for which       is an 
equilibrium point i.e.,             

INFORMAL DEFINITION: The equilibrium point is locally 
exponentially stable if any initialization of the system sufficiently 
close to the equilibrium, converges to the equilibrium point “very 
quickly“ (distance to equilibrium decays at the rate                  )

✓?

h(✓?) = 0
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/ e�O(t)



PROVING STABILITY

✓̇ = h(✓) ✓?

h(✓?) = 0

LINEARIZATION THEOREM: The equilibrium of this (non-linear) system is 
locally exponentially stable if and only if its Jacobian at equilibrium 
HAS EIGENVALUES WITH STRICTLY NEGATIVE REAL PARTS:

J =
@h(✓)

@✓

����
✓?

=

2

664

@h1(✓)
@✓1

@h1(✓)
@✓2

. . .
@h2(✓)
@✓1

@h2(✓)
@✓2

. . .

@h3(✓)
@✓1

...
...
...
...

3

775

✓=✓?

(asymmetric, real square matrix with  
possibly complex eigenvalues)

Jv = �v =) Re(�) < 0
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Consider a dynamical system                  for which       is an 
equilibrium point i.e.,             



PROVING STABILITY

✓̇ = h(✓) ✓?

h(✓?) = 0

LINEARIZATION THEOREM: The equilibrium of this (non-linear) system is 
locally exponentially stable if and only if its Jacobian at equilibrium 
HAS EIGENVALUES WITH STRICTLY NEGATIVE REAL PARTS:

J =
@h(✓)

@✓

����
✓?

=

2

664

@h1(✓)
@✓1

@h1(✓)
@✓2

. . .
@h2(✓)
@✓1

@h2(✓)
@✓2

. . .

@h3(✓)
@✓1

...
...
...
...

3

775

✓=✓?

(asymmetric, real square matrix with  
possibly complex eigenvalues)

Jv = �v =) Re(�) < 0
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Consider a dynamical system                  for which       is an 
equilibrium point i.e.,             1D Sanity Check/Intuition:

✓̇ = �✓

Origin

J = �1 < 0

✓



OUTLINE

GAN Formulation 

Toolbox: Non-linear systems 

Challenge: Why is proving stability hard? 

Main result 

Stabilizing GANs
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RECALL: GAN OPTIMIZATION

V (✓G, ✓D)max

✓D
min
✓G

We consider: infinitesimal, simultaneous gradient 
descent updates

until 
equilibrium: 

Repeat simultaneously:

✓̇D = r✓DV (✓G, ✓D)

✓̇G = �r✓GV (✓G, ✓D)

✓̇G = 0

✓̇D = 0

time derivative
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WHY IS PROVING GAN STABILITY HARD?
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GAN involves concave-minimization—concave-maximization, 
even for a linear discriminator and a generator.

D✓D (x) = ✓Dx G✓G(z) = ✓GzG✓G
D✓D

max

✓D
min
✓G

E
x⇠pdata [f(D(x))] + E

z⇠platent [f(�D(G(z)))]D✓DG✓GD✓DD✓D (x) = ✓Dx G✓G(z) = ✓Gz✓D

fGiven     is concave for GANs ,  
 objective is concave w.r.t     .✓G



✓G

✓D

If objective were convex-concave, 
would’ve been easy!

but for GANs, it is concave-concave. 
Sad!

✓G

✓D

WHY IS PROVING GAN STABILITY HARD?
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The generator’s descent 
updates take us away from 

equilibrium!

The descent-ascent updates 
individually point in the 
direction of equilibrium.



WHY IS PROVING GAN STABILITY HARD?
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SOME CONCURRENT WORK: 
Mescheder et al., ’17: GANs may not be stable. 

Heusel et al., ’17, Li et al., ’17: Stable provided 
discriminator updates “dominate” generator 
updates in some way. e.g.,

x 100✓̇D = r✓DV (✓G, ✓D)

✓̇G = �r✓GV (✓G, ✓D)

But GANs  in practice: updated with  
“equal weights”…



Despite a concave-concave objective,  
simultaneous gradient descent GAN equilibrium 

is  
“locally exponentially stable” 

under suitable conditions  
on the representational powers of  

the discriminator & generator.
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OUTLINE

GAN Formulation 

Toolbox: Non-linear systems 

Challenge: Why is proving stability hard? 

Main result: GANs are stable 

Stabilizing WGANs
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ASSUMPTION 1

Consider an equilibrium point  (    ,    ) such that 
generated distribution matches true distribution: 

and discriminator cannot tell real and generated 
data apart: 

 

✓?D ✓?G

p✓?
G
(·) = pdata(·)✓?G

D✓?
D
(x) = 0 for all  

x

x

NOTE: 
1. This is an equilibrium point (updates are 0 here). 
2. Other kinds of equilibria may exist. 
3. More relaxations in the paper, but at the cost of other restrictions
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ASSUMPTION 2

28

✓?D

AT  EQUILIBRIUM DISCRIMINATOR, this is already a 
concave function.

Consider the objective at the equilibrium generator,  
as a function of the discriminator. 

V (✓D, ✓?G)✓D

We assume stronger curvature. 
the corresponding Hessian                       evaluated at 
equilibrium discriminator is NEGATIVE DEFINITE.

r2
✓DV (✓D, ✓G)V (✓D, ✓?G)✓D



✓?G

ASSUMPTION 3

29

Consider  
“the magnitude of the objective’s gradient w.r.t equilibrium discriminator”,  

as a function of the generator. 

kr✓DV (✓D, ✓G)k2
��
✓D=✓?

D
✓G

AT  EQUILIBRIUM GENERATOR, this is already  
a convex function.

We assume stronger curvature. 

the Hessian                                                                  

evaluated at equilibrium generator is POSITIVE DEFINITE.

kr✓DV (✓D, ✓G)k2
��
✓D=✓?

D
✓Gr2

✓G
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These strong curvature assumptions  
imply a locally unique equilibrium.  

We also consider a specific relaxation allowing  
a subspace of equilibria.

flat  
direction

strong curvature



RECALL: GAN OPTIMIZATION

V (✓G, ✓D)max

✓D
min
✓G

We consider: infinitesimal, simultaneous gradient 
descent updates

until 
equilibrium: 

Repeat simultaneously:

✓̇D = r✓DV (✓G, ✓D)

✓̇G = �r✓GV (✓G, ✓D)

✓̇G = 0

✓̇D = 0

time derivative
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MAIN RESULT

THEOREM: Under assumptions 1-3, the equilibrium of 
the simultaneous gradient descent GAN system is 
locally exponentially stable. 
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MAIN RESULT

THEOREM: Under assumptions 1-3, the equilibrium of 
the simultaneous gradient descent GAN system is 
locally exponentially stable. 
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Specifically, the Jacobian at equilibrium has 
eigenvalues with strictly negative real parts.

J =
@h(✓)

@✓

����
✓?

=

2

664

@h1(✓)
@✓1

@h1(✓)
@✓2

. . .
@h2(✓)
@✓1

@h2(✓)
@✓2

. . .

@h3(✓)
@✓1

...
...
...
...

3

775

✓=✓?

(asymmetric, real square matrix with  
possibly complex eigenvalues)

Jv = �v =) Re(�) < 0



Jacobian at equilibrium:
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PROOF OUTLINE

@✓̇D
@✓D

@✓̇G
@✓D

@✓G
@✓̇D

@✓̇G @✓G



=
r2

✓DV (✓D, ✓G) r✓Dr✓G V (✓D, ✓G)

�( )Tr✓Dr✓G V (✓D, ✓G) �r2
✓GV (✓D, ✓G)

Jacobian at equilibrium:
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negative 
definite 

A negative definite diagonal matrix makes it more likely that the 
whole matrix has eigenvalues with negative real parts.

PROOF OUTLINE

@✓̇G
@✓D

@✓G
@✓̇D

@✓̇G @✓G



=
�r2

✓GV (✓D, ✓G)

r2
✓DV (✓D, ✓G)

Jacobian at equilibrium:

36

negative 
definite 

A negative definite diagonal matrix makes it more likely that the 
whole matrix has eigenvalues with negative real parts.

full 
column 
rank

negative 
transpose

Assumption 3: positive definite

r✓Dr✓G V (✓D, ✓G)

r✓Dr✓G V (✓D, ✓G)�( )T

PROOF OUTLINE

�( )Tr✓Dr✓G V (✓D, ✓G) r✓Dr✓G V (✓D, ✓G) = kr✓DV (✓D, ✓G)k2
��
✓D=✓?

D
✓Gr2

✓G

@✓̇G @✓G



PROOF OUTLINE

=

r✓Dr✓G V (✓D, ✓G)

�( )Tr✓Dr✓G V (✓D, ✓G)

r2
✓DV (✓D, ✓G)

Jacobian at equilibrium:
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negative 
definite 

A negative definite diagonal matrix makes it more likely that the 
whole matrix has eigenvalues with negative real parts.

full 
column 
rank

negative 
transpose

�r2
✓GV (✓D, ✓G)



=

r✓Dr✓G V (✓D, ✓G)

�( )Tr✓Dr✓G V (✓D, ✓G) �r2
✓GV (✓D, ✓G)

r2
✓DV (✓D, ✓G)

Jacobian at equilibrium:
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negative 
definite 

A negative definite diagonal matrix makes it more likely that the 
whole matrix has eigenvalues with negative real parts.

full 
column 
rank

negative 
transpose

could be (— negative definite) 
i.e., positive definite! 

0

PROOF OUTLINE



=

r✓Dr✓G V (✓D, ✓G)

�( )Tr✓Dr✓G V (✓D, ✓G) �r2
✓GV (✓D, ✓G)

r2
✓DV (✓D, ✓G)

Jacobian at equilibrium:
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negative 
definite 

A negative definite diagonal matrix makes it more likely that the 
whole matrix has eigenvalues with negative real parts.

full 
column 
rank

negative 
transpose 0

fix discriminator as all-zero equilibrium discriminator,  
objective is a constant:

Epdata [f(0)] + Ep✓G
[f(0)] = 2f(0)

PROOF OUTLINE



=

r✓Dr✓G V (✓D, ✓G)

�( )Tr✓Dr✓G V (✓D, ✓G) �r2
✓GV (✓D, ✓G)

r2
✓DV (✓D, ✓G)

Jacobian at equilibrium:

40

negative 
definite 

full 
column 
rank

negative 
transpose 0

MAIN LEMMA:  Matrices J of this form have eigenvalues with 
strictly negative real parts:  

Jv = �v =) Re(�) < 0

THUS, THE GAN EQUILIBRIUM IS LOCALLY EXPONENTIALLY STABLE.

PROOF OUTLINE



OUTLINE

GAN Formulation 

Toolbox: Non-linear systems 

Challenge: Why is proving stability hard? 

Main result: GANs are stable 

Stabilizing WGANs
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=

r✓Dr✓G V (✓D, ✓G)

�( )Tr✓Dr✓G V (✓D, ✓G) �r2
✓GV (✓D, ✓G)

r2
✓DV (✓D, ✓G)

Jacobian at equilibrium:
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full 
column 
rank

negative 
transpose 0

WGAN

f(t) = t

Epdata [D(x)] + Ep✓?
G
[�D(x)] = 0

fix generator to be at equilibrium:

0

THEOREM: There exists an equilibrium for simultaneous 
gradient descent WGAN that does not converge locally.



THEOREM: There exists an equilibrium for simultaneous 
gradient descent WGAN that does not converge locally.
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!1.0 !0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

w2

a

WGAN, Η#0.0

Discriminator

G
en

er
at

or A system learning 
a uniform 

distribution.

WGAN



GRADIENT-NORM BASED REGULARIZATION
˙✓D = r✓DV (✓D, ✓G)

˙✓G = �r✓GV (✓D, ✓G) kr✓DV (✓D, ✓G)k2�⌘r✓G

Generator minimizes (the objective + the norm of the 
discriminator’s gradient).

full 
column 
rank

negative 
transpose 0

0

✓G
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THEOREM: Under similar assumptions, the equilibrium of the regularized 
simultaneous gradient descent (W)GAN system is locally exponentially stable 
when      not too large. �⌘

negative 
definite



REGULARIZED WGAN
(learning a uniform distribution)

!1.0 !0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

w2

a
WGAN, Η#0.0

!1.0 !0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

w2

a

WGAN, Η#1

!1.0 !0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

w2

a

WGAN, Η#0.5

!1.0 !0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

w2

a

WGAN, Η#0.25

⌘ = 0

⌘ = 0.5

⌘ = 0.25

⌘ = 1.0
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Traditional 
GAN 

Generator  
is “greedy”

Generated  
points

Real 
points

(Initialization)

FORESIGHTED GENERATOR

46

GAN training: a game where discriminator and generator try to outdo each 
other until neither can outdo the other.

Greedy generator strategy: Generate only one data point:  
the one to which discriminator has assigned highest value  

(“most real” according to discriminator).



Traditional 
GAN 

Generator  
is “greedy”

Generated  
points

Real 
points

(Initialization)

FORESIGHTED GENERATOR
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GAN training: a game where discriminator and generator try to outdo each 
other until neither can outdo the other.

OBSERVATION: Generator keeps updating to state where 
objective                  is small but 

discriminator update                               is large.kr✓DV (✓D, ✓G)k2
V (✓G, ✓D)

SOLUTION: Generator explicitly seeks state where 
objective                  is small AND 

discriminator update                          is small.kr✓DV (✓D, ✓G)k2
V (✓G, ✓D)



Traditional 
GAN 

Generator  
is “greedy”

Generated  
points

Real 
points

(Initialization)

FORESIGHTED GENERATOR
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˙✓G = �r✓GV (✓D, ✓G) kr✓DV (✓D, ✓G)k2�⌘r✓G

Traditional 
GAN but 

with  
Regularized 
Generator

(Initialization)

GAN training: a game where discriminator and generator try to outdo each 
other until neither can outdo the other.



CONCLUSION

Theoretical analysis of local convergence/stability of 
simultaneous gradient descent GANs using non-linear 
systems. 

GAN objective is concave-concave, yet simultaneous 
gradient descent is locally stable — perhaps why 
GANs have worked well in practice. 

Our analysis yields a regularization term that provides 
more stability.
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OPEN QUESTIONS

Prove local stability for a more general case  

Global convergence? 

Many more theoretical questions in GANs: when do 
equilibria exist? Do they generalize?
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THANK YOU. 
QUESTIONS?
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