UNIFORM CONVERGENCE MAY BE UNABLE TO EXPLAIN GENERALIZATION IN DEEP LEARNING

VAISHNAVH NAGARAJAN!

THE HIGH LEVEL MESSAGE
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We study the big open question in deep learning theory:
“Why do overparameterized networks generalize well

even though standard intuition suggests otherwise2”
B ] ~. - . ’

‘ " -~
.'ﬁ' iy
= - \

To decode this puzzle, many generalization bounds have been proposed
- all based on the learning-theoretic tool of uniform convergence.

We argue that this high-level direction (of deriving uniform
convergence-based bounds in deep learning) may  provide the
complete answer to the generalization puzzle.

THE GENERALIZATION PUZZLE & UNIFORM CONVERGENCE (U.C)

Conventional u.c. bounds (like VC dim) fail to explain generalization in
deep learning [1,2]:
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For tighter, more meaningful bounds, the proposed suggestion was to
identify implicit bias and use it to refine vu.c. bounds:
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Potentially depends on norms controlled by SGD
e.g., dist. from init, spectral norm

PROGRESS SO FAR

Many many, novel, refined u.c. bounds have been proposed, using
Rademacher complexity, covering numbers, compression, PAC-Bayes.

While each bound explains generalization in some aspect,
it also fails in some other aspect.
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Our 1st finding:
GENERALIZATION BOUNDS T WITH TRAINING SET SIZE

Notation: For input x, let logit output of network f on class k be f(x)[k].

On datapoint (x,y), define margin of f to be
Clf (), y] = f()ly] = max f(x)[y’].

Let S be training set of m examples drawn i.i.d from D. Denote network
depth by d and width by h.

Experimental Setup: SGD with learning rate 0.1 and mini-batch size 1

until 99% of (random subset of) MNIST is classified by a margin of 10.

We evaluate bounds from [3,4], other bounds behave similarly:
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Generalization gap decreases Generalization bounds increase as Q(m)
as O(m~9%%%) (For d =5,h = 1024, y « 10)

See also [5] for norms-vstraining-set-size plots in kernel learning, although for data with partially-corrupted labels and [6,7] for
norm-vs-training-set-size plots.

Parameter-count dependence is only one part of

the puzzle. We must worry about training-dataset-size
dependence too!

Our 2nd finding:
PROVABLE FAILURE OF UNIFORM CONVERGENCE

We show that there are situations in deep learning where any uniform

convergence bound however refined, will provably fail to explain
generalization.

generalization gap < any refined v.c. bound

this will be
vacuous (~ 1)

even though
this is small (=~ 0)
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Key element in proof: TIGHTEST UNIFORM CONVERGENCE

Notations: Let hg € H be hypothesis learned on dataset S ~ D™ . Let

L, (h) denote test 0-1 error of h & Ls(h) denote empirical 0-1 error on S.

Def 1: The generalization gap is the smallest value of €, s.t.
with prob. 1 — § over draws of S ~ D™ :

Lp(hg) — Lg(hs) < €gen

Def 2: The “conventional” v.c. bound is the smallest value of €, s.t.
with prob. 1 — § over draws of S ~ D™ :

SuphEIHI‘LD (h) — Zs(h)‘ < €Eunif

To refine this bound, we can consider many different kinds of “relevant
subsets” in H e.g.,

Tightest refinement:
excludes all irrelevant

hypotheses

L,-norm based Lz-no'rm based
refinement refinement

Def 3: The tightest algorithm-dependent u.c. bound is the smallest value
Eunif—alg for which there exists Sg such that (i) Prg.pm[S € Sg] < § and

(ii) Hy & {he|S € S5} and finally (iii):
SUPses,SUPnrei, |Lp(h) — Ls(h)| < €unif—aig

FAILURE OF U.C. IN A HYPERSPHERE EXAMPLE

We train a 2-layer network of width
h = 100k using SGD to classify two concentric uniform

1000-dimensional hyperspheres of radius 1 and 1.1. Lraining
ata §
training
datapoint  Next, we create a

. projected training set S’.
projecte

training (by projecting each training datapoint onto its opposite
datapoint hypersphere and flipping to correct label)

Observe that while generalization gap
improves with m, S’ is always completely
misclassified (even though it's a “valid”
dataset).

We show that this leads to failure of
tightest u.c. (i.e., €ynif—aig ® 1) and
hence failure of all u.c. bounds.
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PROOF INTUITION

Key Lemma: For any given training set S, if we can design a
corresponding “bad set” S’ such that /s misclassifies S* and S’ ~ D™

(i.e., the distribution of S’ without
conditioning on S must be i.i.d from D)

Mathematical intuition:
« Onone hand, VS € S;, for the corresponding /s both Li(hs) and
Lp(hs) are small = small €.

« However, at the same time, 3 S € S5 with a “bad” counterpart
h € Hg such that Ls(h) is large and Lp (k) is small = large €,p;¢—a14-

Conceptual intuition: In order to classify most

test data correctly, but misclassify S’, the

learned boundary must be representationally
learned complex enough to “memorize” skews at S’.
boundary

The decision boundary learned by SGD on
overparameterized deep networks can have certain
complexities which hurt u.c., without hurting generalization.

CONCLUSIONS AND FUTURE WORK

Can uniform convergence provide a complete answer to the
generalization puzzle? Most likely, not.

Must go beyond uniform convergence - derive new tools
using our negative examples as test cases

Conjecture: Functions learned by deep networks can be
decomposed into:

a function that adds
microscopic fluctuations
and does not obey u.c.

a function that produces a
simple boundary &
generalizes well T
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