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One of the biggest open challenges in deep learning theory is the generalization 
puzzle. Classical learning theory suggests that models that have many many more 
parameters than training datapoints, should not really generalize well. But, deep 
network models generalize very well inspite of heavy overparameterization. What 
explains this counter-intuitive behavior?

Theoretical works have tried to understand this by deriving upper bounds on the 
generalization gap of deep networks. Notably, most of these bounds are based on the 
same learning-theoretic idea of uniform convergence. Now, despite a lot of work in 
this space, a tight generalization bound has so far proven to be elusive. 

In this work, we take a step back, and argue that this high level direction of pursuing 
uniform convergence-based bounds may not actually lead us to the complete 
solution of this puzzle.  
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For this talk, we’ll first go over some background work and then look at the two main 
findings which are limitations of u.c. bounds.
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To recap, here’s what we already know about uniform convergence before this work.  

Standard uniform convergence bounds measure the representational complexity of 
the whole class of functions representable by a deep network. However, a deep 
network is an extremely expressive model, as a result of which these bounds are 
vacuous. Mathematically, the numerator here grows with the parameter count, and is 
hence larger than the denominator in the overparameterized setting, leading to a 
vacuous bound.  

To fix this, the solution proposed was to take into account the **implicit bias** of 
SGD. That is, we must derive these bounds by “ignoring extraneous hypothesis” and 
focusing only on those that are relevant to the algorithm and the data distribution
The hope was this would yield tighter bounds typically by depending on the weight 
norms of the network that are controlled by SGD, like its spectral norms, distance 
from initialization etc., 
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This proposal triggered an exciting and active area of research resulting in a wide 
variety of 
refined uniform convergence bounds over the last couple of years: PAC-Bayesian to 
Rademacher to covering number to compression based bounds. 
All these works shed a lot of varying insights into why deep networks generalize well. 
I.e. each of these bounds explained certain aspects of generalization.

Unfortunately, while these papers explained generalization in one way or the other, 
they also failed to explain eneralizationi in some other way. These are either too large 
or grow with parameter count unlike the actual generalization gap. The ones that are 
small require the network learned by SGD to be modified say, by compression or 
explicit regularization.
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In this backdrop, we take a step back and study limitations of uniform convergence 
based bounds. Our first finding is an empirical limitation of these bounds.
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, we observe that there are certain hyperparameter configurations for which, on one 
hand, the test error and the generalization gap decrease with training set size, as 
expected. However, unfortunately, existing generalization bounds increase with the 
training set size. And this holds despite the fact that the denominator in these bounds 
grow with training set size. And this is so, because the numerator here has certain 
weight norms which grow drastically with the training set size. We present many 
other related observations about this in the paper, but the main take away is that:
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The main takeaway from our first finding here is that, on one hand we have all been 
focusing on the parameter count dependence of these generalization bounds. At the 
same time, our finding highlights that we should also worry about deriving 
generalization bounds that have at least a reasonable kind of dependence on the 
training set size… as that is another aspect of generalization that ours bounds should 
be able to explain.
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So, clearly, uniform convergence bounds, at least the ones that exists, seem to suffer 
from problems in practice. But one might still wonder, if it’s possible somehow 
cleverly refine these bounds in a way that we can overcome all these problems. To 
this, we present our second finding which is a provable failure of u.c.
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Specifically, we show that any uniform convergence bounds, including all kinds of 
refined uniform convergence bounds, will provably fail to explain generalization in 
certain situations in deep learning. 

By this, we mean that even though the generalization gap in these settings is really 
small, any refined uniform convergence bound would be vacuous in these settings.
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How do we show this? A crucial element in our proof is what we define as the 
tightest uniform convergence bound, which we eventually show is vacuous. To see 
what we mean by this term, let us go over some quick technical definitions. 

Given a training set S, let us denote the hypothesis learned by the algorithm by h_S. 
Then, w.h.p over the training set drawn iid from an underlying distribution D, the 
generalization gap is the difference between the test error and the empirical error on 
the dataset S, for the hypothesis h_S learned on S. In other words, the difference 
between the test and the training error. 

Now, a naïve u.c. bound is an upper bound this quantity. And this essentially 
corresponds to looking at the difference between the empirical and test error 
uniformly overall hypothesis in the hypothesis class H, instead of just the hypothesis 
learned on the dataset S.

However, this is pretty loose. And to refine this, we want to exclude irrelevant 
hyptoehsis. There would be many ways to do this, For example, by focusing on an l2 
norm ball containing the relevant hypothesis or an l1 norm ball. And this is precisely 
the kind of pursuit that has been happening in deep learning: we want to identify a 
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nice kind of refinement which would lead to a meaningful bound. 
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But, let us take this to the extreme and think about the tightest possible refinement. 
To get the tightest possible refinement, we need to ignore all irrelevant hypothesis on 
focus on a subset of hypotheses that includes only those hypothesis learned by the 
**given algorithm** for the **given data distribution**. Let’s call this hypothesis call 
H^*. Then, the tightest uniform convergence bounds would be one where the sup is 
restricted to H^*. and all other u.c. bounds would be llooser than this bound.

Having defined this quanity, we essentially show that even this tightest u.c. bound 
would become vacuous in certain settings, and so does all other u.c. bounds
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Here’s the setting where we show failure of u.c. Consider a binary classification task 
where we are given two uniform hypersphere distributions in 1000 dimensions. The 
two hyperspheres are close to each other and we must learn a decision boundary 
that separates them.
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These hyperspheres are close to each other, but they are perfectly separable since 
there is no label noise.
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First, we observe that as we have more and more training data, as seen in this plot, 
the network improves it generalization.

Now to show failure of uniform convergence, there are two key steps. 
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Our first step is to create a dataset S’ which is obtained by 
projecting each training point onto its opposite hypersphere and flipping its label to 
match the opposite hypersphere. 
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As a crucial second step, we demonstrate that even though the test error and the 
training error is very small, the dataset S’ is completely misclassified as seen in this 
plot.  
Intuitively, this indicates that there are skews in the decision boundary located 
specifically around the training datapoints which results in misclassification of the 
projected datapoints S’.  

Or in other words, the decision boundary is itself inherently quite complex -- complex 
enough to memorize skews in
the locations of the training datapoints. 

We then mathematically show that this sort of inherent complexity renders even the 
most refined hypothesis class H^*, which we defined a couple of slides ago, to be 
very complex. And so all uniform convergence bounds, included the tightest one, is 
limited/lower-bounded by this inherent complexity. Thus, all these bounds become 
vacuous in this particular setting. 
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To be a bit more mathematical, we would have that the numerator in the tightest u.c. 
bound is as large as the training set, and hence the bound becomes vacuous. This is 
the outline of our proof.
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The main takeaway from this second finding is the following: the decision boundary 
learned by SGD on overparamtereize deep networks can be inherently complex in 
certain ways, and due to these complexities, uniform convergence can provably fail. 
At the same, these complexities do not hurt generalization error.
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In conclusion, in this work, we cast doubt on the power of uniform convergence 
bounds to fully explain generalization in deep learning. First, we highlight that 
explaining the training-set-size dependence of the generalization error is apparently 
just as non-trivial as explaining its parameter-count dependence. Furthermore, we 
also showed that there are scenarios where all uniform convergence bounds, 
however cleverly applied, become vacuous.
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In order to get a better grasp of generalization in deep learning, we believe that it is 
essential to better understand the complexities that we observed in the decision 
boundaries learned by deep networks. Furthermore, it may be useful to more 
carefully explore other learning-theoretic tools like algorithmic stability. Perhaps the 
most exciting direction would be to derive new learning-theoretic tools. And to do 
this, our negative examples may be useful test cases.
Overall, we belive that going beyond uniform convergence may be essential to fully 
explaining generalization in deep learning. 
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