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GENERATIVE ADVERSARIAL NETWORKS (GANS)
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A breakthrough generative mode
[Goodfellow et al., ‘14]

[Images of “fake” celebrities from Karras et al., '17]



We study
a fundamental question about
convergence of GAN optimization
using tools from non-linear
systems theory.



GENERATIVE ADVERSARIAL NETWORKS (GANS)
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GAN OPTIMIZATION
Find (global) equilibrium of the game
i.e., saddle point of min-max obijective.




GENERATIVE ADVERSARIAL NETWORKS (GANS)
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GLOBAL EQUILIBRIUM: Generated distribution = Real distribution.

If this is realizable,
does it have “good convergence properties”?




GAN optimization typically seems to find a good
solution. But has it really converged?
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OPEN QUESTION

Can we rule out cycling/unstable dynamics near
equilibrium?

Is the equilibrium “locally exponentially stable”?

Informally, is any initialization sufficiently close to

equilibrium guaranteed to converge under the optimization
procedure?

“Minimum” requirement from the optimization
procedure!




WHY IS PROVING GAN STABILITY HARD?
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But this (concave-concave)




WHY IS PROVING GAN STABILITY HARD?
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. Concave at equilibrium :)

‘- Concave even arbitrarily close to equilibrium
even for linear generator & discriminator 3(

But this (concave-concave)

Even arbitrarily close to
equilibrium, updating
only the generator — will
diverge because of
concavity!




WHY IS PROVING GAN STABILITY HARD?

Other proofs [Li et al., ‘17, Heusel et al., '17]: stability
given discriminator is trained more often — closer to a pure
minimization

In practice, seems to work without this assumption!

But this (concave-concave)

Even arbitrarily close to
equilibrium, updating
only the generator — will
diverge because of
concavity!
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GAN OPTIMIZATION

Infinitesimal, simultaneous gradient descent:
closer to practically used GAN training i.e., updates at
similar frequency

/\HD — VQDV((QG,HD)

time derivative

\_ _~0c=-Vo.V(0g,0p)

Computationally cheaper than alternate updates
— fewer forward & backward passes
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Despite a concave-concave objective,
despite not training discriminator to optimality at
each step,

simultaneous gradient descent GAN equilibrium
IS
“locally exponentially stable”
under suitable conditions.
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ToOOLBOX: NON-LINEAR SYSTEMS

LINEARIZATION THEOREM: The equilibrium (> of a non-
linear system is locally exponentially stable if and only if its

Jacobian at equilibrium

J:%

0=0*

HAS EIGENVALUES WITH STRICTLY NEGATIVE REAL PARTS.
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PROOF OUTLINE

Jacobian near equilibrium
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PROOF OUTLINE

Jacobian near equilibrium
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because of concave-concavity!
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PROOF OUTLINE

Jacobian at equilibrium
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KEY QUESTION: Can this have all eigenvalues with
strictly negative real parts despite the zero block?
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PROOF OUTLINE

Jacobian at equilibrium

well-behaved

KEY LEMMA: Under some strong curvature assumptions,
all eigenvalues have negative real parts despite the zero
diagonal block!
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PROOF OUTLINE

Jacobian at equilibrium

well-behaved

Thus, equilibrium is locally exponentially stable
despite the zero diagonal block!
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ILLUSTRATION
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The dynamics of simultaneous gradient descent GAN is quite
non-linear. But it still converges!

19



GRADIENT-NORM BASED REGULARIZATION

0D maximizes V (6p,0¢)

(9(; minimizes V(@D’QG)_|_77HVQDV((9D’9G)H2

like a damping term

Generator minimizes the objective +

the norm of gradient w.r.t discriminator parameters.
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GRADIENT-NORM BASED REGULARIZATION

Provably enhances local stability.

Wasserstein GAN [Arjovsky’17]

under ... with regularization
simultaneous gradient descent
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CONCLUSION

* Local stability of GANs using non-linear systems

* GAN objective is concave-concave, yet simultaneous
gradient descent equilibrium is locally stable —
perhaps why GANs have worked well in practice.

* Regularization term provably enhances local stability.
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OPEN QUESTIONS

* Analyze other objectives and optimization

techniques: -GANs, unrolled GAN: ...

* Relaxing some assumptions e.g., non-realizable case.

* Global convergence, at least for simple architectures

* Many other theoretical questions e.g., when do
equilibria satisfying our conditions exist?

* Many other powerful tools in non-linear systems
theory!
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