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GENERATIVE ADVERSARIAL NETWORKS (GANS)

2

A breakthrough generative model  
[Goodfellow et al., ’14]

[Images of “fake” celebrities from Karras et al., ’17]
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We study  
a fundamental question about  

convergence of GAN optimization 
 using tools from non-linear 

systems theory.



GENERATIVE ADVERSARIAL NETWORKS (GANS)

GAN OPTIMIZATION  
Find (global) equilibrium of the game  

i.e., saddle point of min-max objective.
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

GLOBAL EQUILIBRIUM: Generated distribution = Real distribution. 

If this is realizable,  
does it have “good convergence properties”? 
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GAN optimization typically seems to find a good 
solution. But has it really converged?

Global 
equilibrium 

 point
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OPEN QUESTION

Is the equilibrium “locally exponentially stable”?
Informally, is any initialization sufficiently close to 
equilibrium guaranteed to converge under the optimization 
procedure?

Can we rule out cycling/unstable dynamics near 
equilibrium?

“Minimum” requirement from the optimization 
procedure!
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WHY IS PROVING GAN STABILITY HARD?
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But this (concave-concave)
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Not this (convex-concave)

E
x⇠preal [log(D(x))] + E

z⇠platent [log(1�D(G(z)))]D D Gmin
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Concave at equilibrium   :)

Concave even arbitrarily close to equilibrium 
even for linear generator & discriminator :( 
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Even arbitrarily close to 
equilibrium, updating 

only the generator — will 
diverge because of 

concavity!
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Other proofs [Li et al., ’17, Heusel et al., ’17]: stability 
given discriminator is trained more often — closer to a pure 
minimization

WHY IS PROVING GAN STABILITY HARD?

✓G
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But this (concave-concave)

Even arbitrarily close to 
equilibrium, updating 

only the generator — will 
diverge because of 

concavity!

In practice, seems to work without this assumption!



GAN OPTIMIZATION
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Infinitesimal, simultaneous gradient descent:  
closer to practically used GAN training i.e., updates at 

similar frequency 

✓̇D = r✓DV (✓G, ✓D)

✓̇G = �r✓GV (✓G, ✓D)
time derivative

Computationally cheaper than alternate updates 
— fewer forward & backward passes



Despite a concave-concave objective,  
despite not training discriminator to optimality at 

each step, 
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simultaneous gradient descent GAN equilibrium 
is  

“locally exponentially stable” 
under suitable conditions.



TOOLBOX: NON-LINEAR SYSTEMS

LINEARIZATION THEOREM: The equilibrium          of a non-
linear system is  locally exponentially stable if and only if its 
Jacobian at equilibrium
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HAS EIGENVALUES WITH STRICTLY NEGATIVE REAL PARTS.
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PROOF OUTLINE
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PROOF OUTLINE
Jacobian near equilibrium

positive 
semi-

definite :(

because of concave-concavity!
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PROOF OUTLINE
Jacobian at equilibrium

0
KEY QUESTION: Can this have all eigenvalues with  
strictly negative real parts despite the zero block?
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PROOF OUTLINE

0
KEY LEMMA:  Under some strong curvature assumptions,  
all eigenvalues have negative real parts despite the zero 
diagonal block!

Jacobian at equilibrium
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well-behaved
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PROOF OUTLINE

0
Thus, equilibrium is locally exponentially stable  
despite the zero diagonal block!

Jacobian at equilibrium
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ILLUSTRATION
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linear generator 
system learning a 

uniform 
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The dynamics of simultaneous gradient descent GAN is quite 
non-linear. But it still converges!



GRADIENT-NORM BASED REGULARIZATION
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Generator minimizes the objective +  
the norm of gradient w.r.t discriminator parameters.

like a damping term 

V (✓D, ✓G) + ⌘✓D maximizes

V (✓D, ✓G) + ⌘✓G minimizes kr✓DV (✓D, ✓G)k2



GRADIENT-NORM BASED REGULARIZATION
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Provably enhances local stability.
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Wasserstein GAN [Arjovsky’17] 
under  

simultaneous gradient descent
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CONCLUSION

•Local stability of GANs using non-linear systems  

•GAN objective is concave-concave, yet simultaneous 
gradient descent equilibrium is locally stable — 
perhaps why GANs have worked well in practice. 

•Regularization term provably enhances local stability.
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OPEN QUESTIONS

•Analyze other objectives and optimization 
techniques: f-GANs, unrolled GANs … 

•Relaxing some assumptions e.g., non-realizable case. 
•Global convergence, at least for simple architectures 

•Many other theoretical questions e.g., when do 
equilibria satisfying our conditions exist? 

•Many other powerful tools in non-linear systems 
theory! 
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THANK YOU. 
QUESTIONS? 
POSTER #99

˙✓G = �r✓GV (✓D, ✓G) kr✓DV (✓D, ✓G)k2�⌘r✓G


