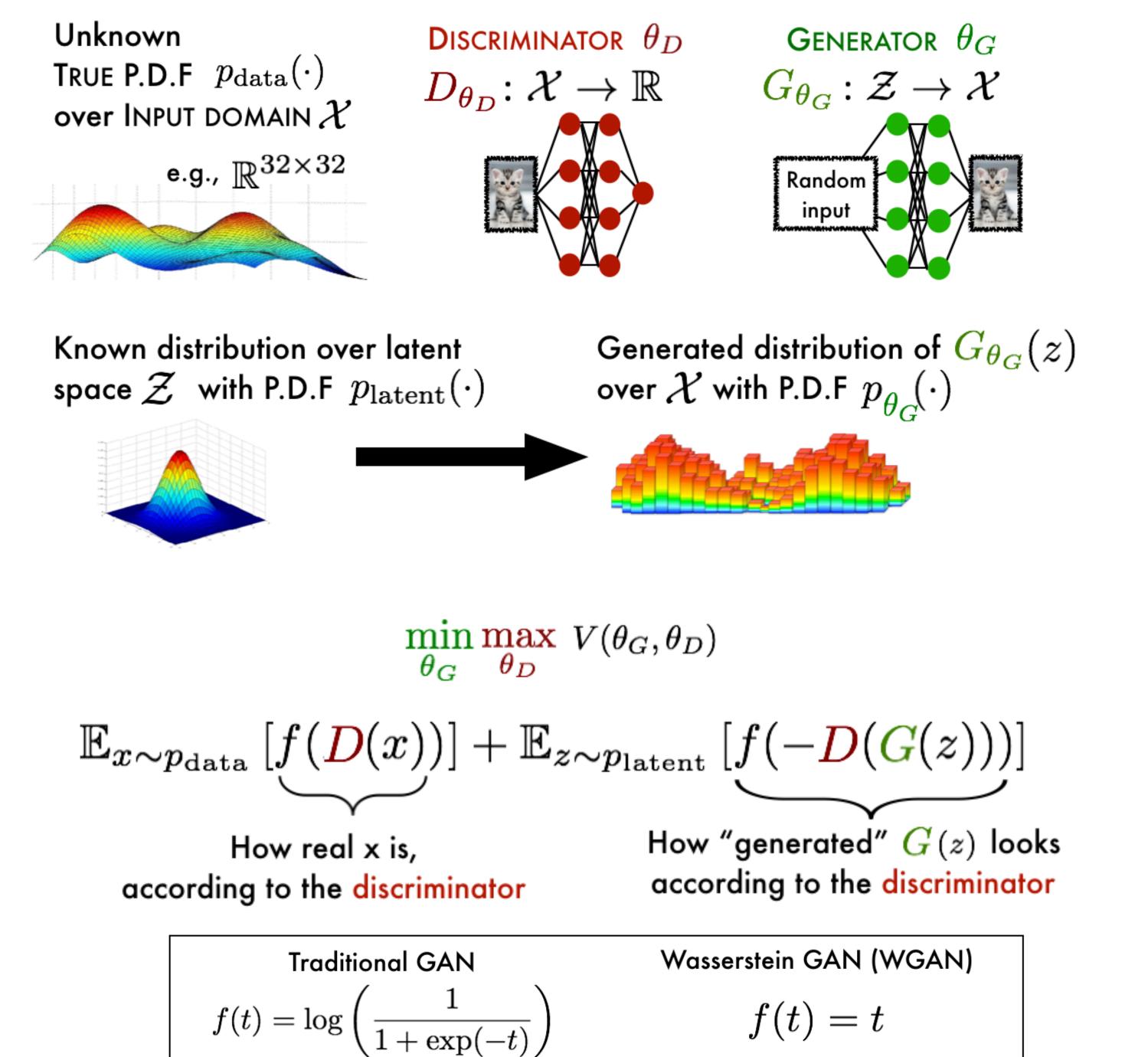


We address a fundamental open question in GANs about the stability of the saddle point equilibrium, using tools from non-linear systems theory.

GENERATIVE ADVERSARIAL NETWORKS (GANS)

An increasingly popular class of generative models – models that "understand" data to output new random data. Formally, GANs learn distribution over the data.

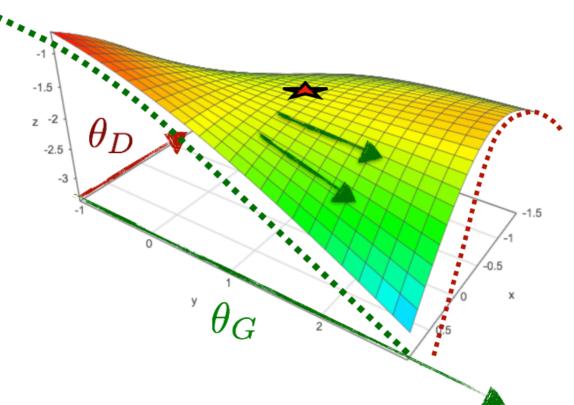


To use non-linear systems tools, we update both parameters simultaneously (not alternately) and infinitesimally for the true (not empirical) objective.

Repeat simultaneously: $\dot{\theta}_D = \nabla_{\theta_D} V(\theta_G, \theta_D)$ time derivative $\checkmark \dot{\theta}_G = -\nabla_{\theta_G} V(\theta_G, \theta_D)$ $heta_D = 0$ equilibrium: $\theta_G = 0$

Proving GAN stability is hard because of concaveconcave-ity arbitrarily close to equilibrium, even for linear models!

Other proofs [3,4] require discriminator to be trained more often - effectively, closer to optimality, bringing system closer to pure minimization.



GRADIENT DESCENT GAN OPTIMIZATION IS LOCALLY STABLE

Vaishnavh Nagarajan, J. Zico Kolter

TOOLBOX: NON-LINEAR SYSTEMS

Consider a dynamical system $\dot{\theta} = h(\theta)$ for which θ^{\star} is an equilibrium point i.e., $h(\theta^{\star}) = 0$

Locally exponentially stable: if for any initialization sufficiently close to equilibrium, the system converges to equilibrium quickly. [1]

LINEARIZATION THEOREM: The equilibrium is $= \frac{\partial h(\theta)}{\partial \theta} \Big|_{\theta^*}$ locally exponentially suble in sec. equilibrium has eigenvalues with strictly not sec.

OUR EXTENSION: Eigenvalue can have zero real part as long as it corresponds to direction within a subspace of equilibria

Alternative stability analysis: LASALLE'S INVARIANCE PRINCIPLE Informally, equilibrium is exponentially stable if there exists a nonnegative energy function ("Lyapunov function") that at any time either

strictly decreases

remains constant only instantaneously,

and is zero only at equilibrium.

ASSUMPTIONS

Some of our assumptions are strong, yet they shed light on what is required for stability.

Global equilibrium is realizable.

تيا

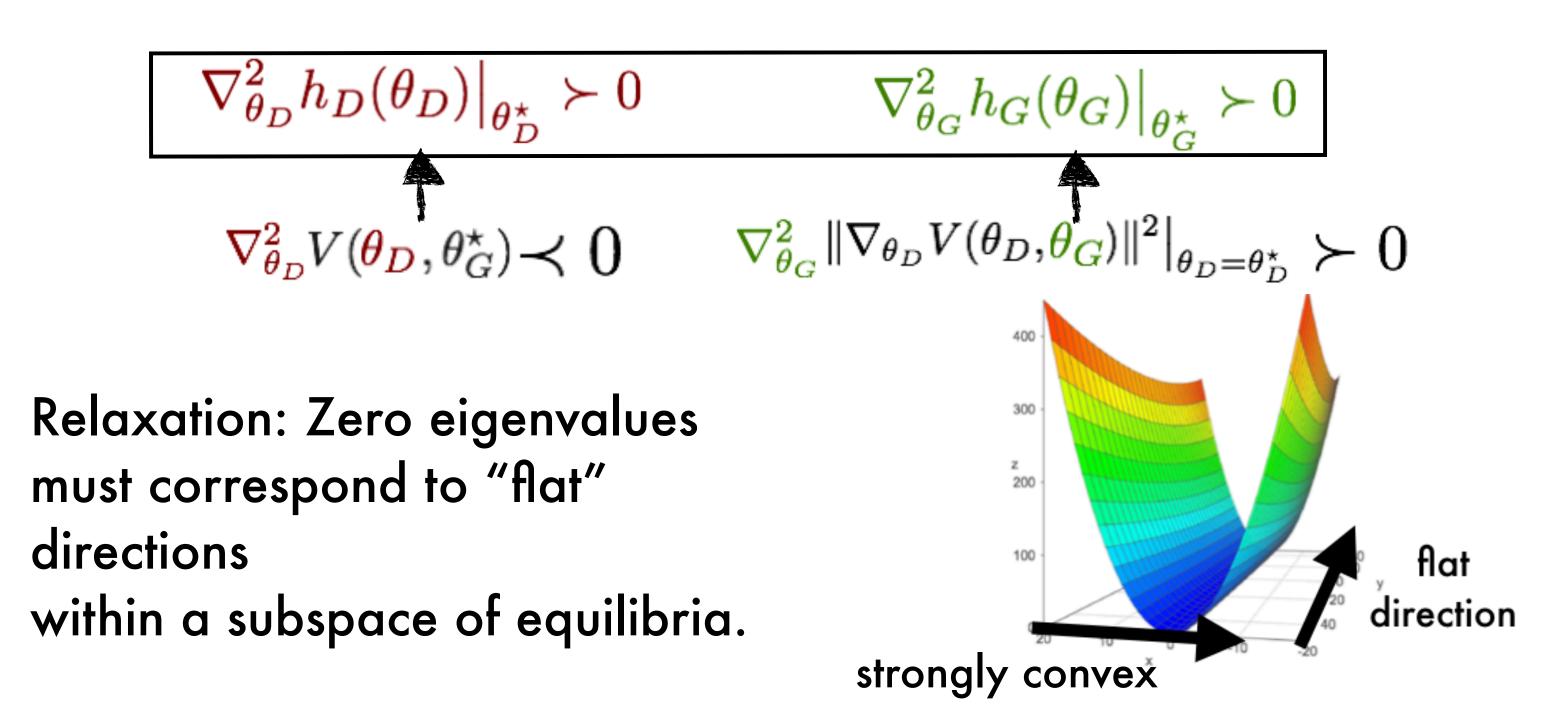
 $p_{\boldsymbol{\theta}^{\star}}(\cdot) = p_{\text{data}}(\cdot)$ $D_{ heta_D^\star}(x) = 0$ for all x

5.

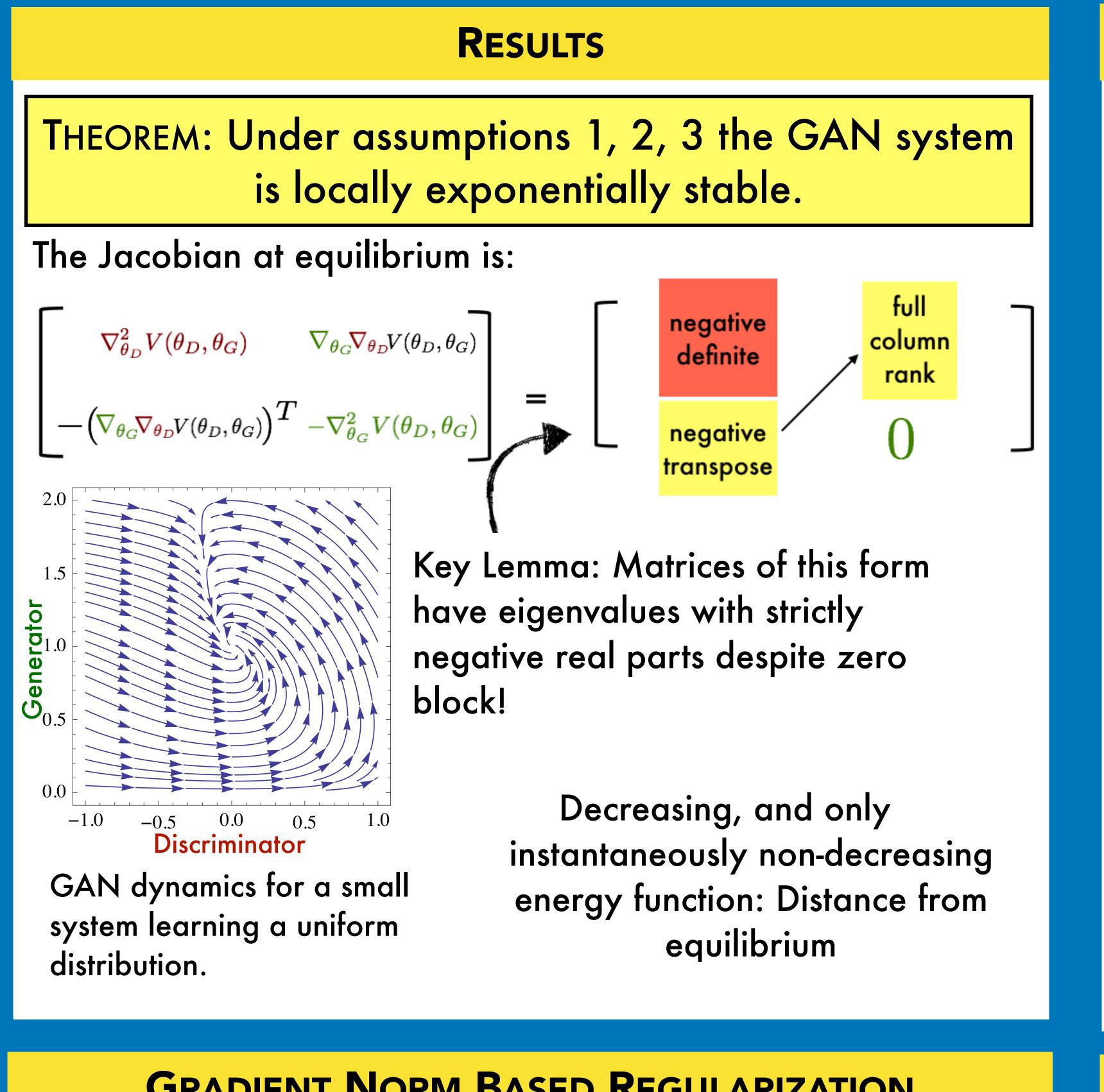
$$\begin{split} h_D(\theta_D) &= & \mathbb{E}_{\text{data}}[D^2_{\theta_D}(x)] \\ h_G(\theta_G) &= & \left\| \mathbb{E}_{p_{\text{data}}}[\nabla_{\theta_D} D_{\theta_D}(x)] - \mathbb{E}_{p_{\theta_G}}[\nabla_{\theta_D} D_{\theta_D}(x)] \right\|^2 \Big|_{\theta_D = \theta_D^*} \end{split}$$

A notion of how "different" the parameters θ_D , θ_G are from equilibrium discriminator θ_D^{\star} and generator θ_G^{\star} respectively.

We assume at equilibrium, these locally convex functions are locally strongly convex – implying a locally unique equilibrium.



 $f''(0) < 0 \& f'(0) \neq 0$



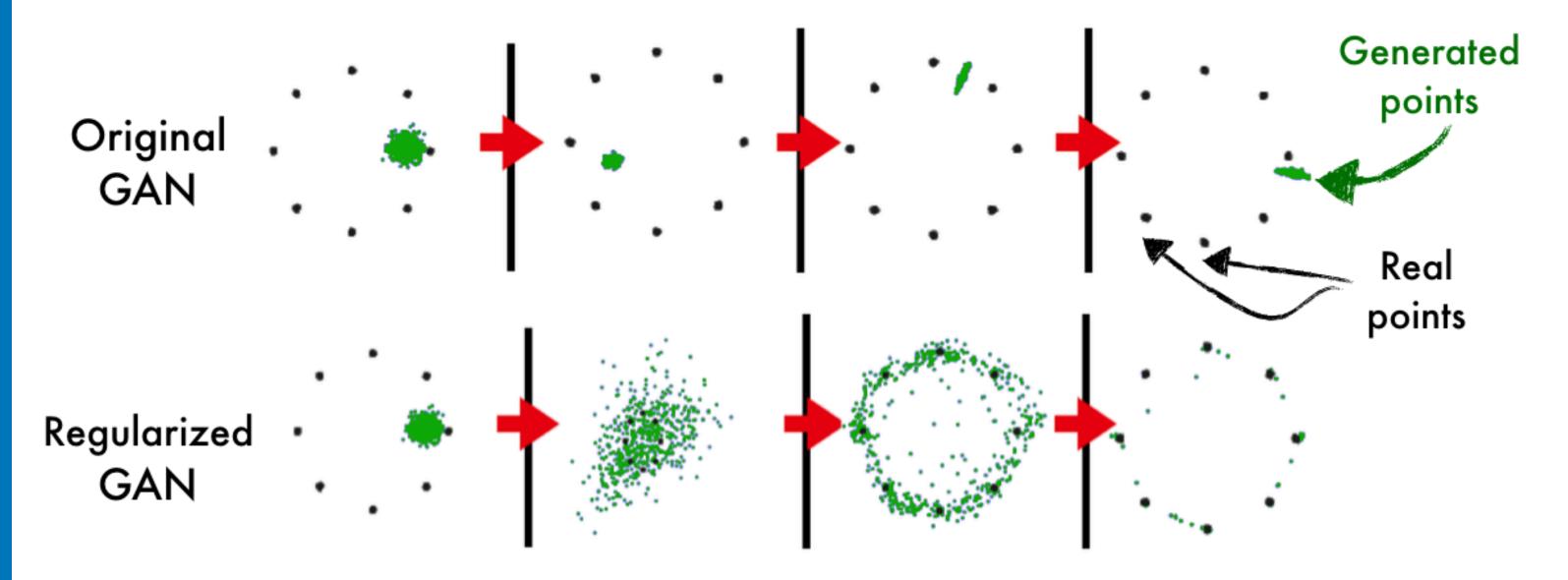
GRADIENT NORM BASED REGULARIZATION

$\dot{\theta_G} = -\nabla_{\theta_G} V(\theta_D, \theta_G) - \eta \nabla_{\theta_G} \mid$	$\ abla_{ heta_D}V(heta_D, oldsymbol{ heta_G})\ ^2$
$\dot{\theta_D} = \nabla_{\theta_D} V(\theta_D, \theta_G)$	

Generator minimizes (the objective + the norm of the discriminator's gradient).

Makes Jacobian "more stable"

2. Provides foresight to the generator: When norm of discriminator's gradient is minimized, discriminator cannot improve itself much to outdo generator.

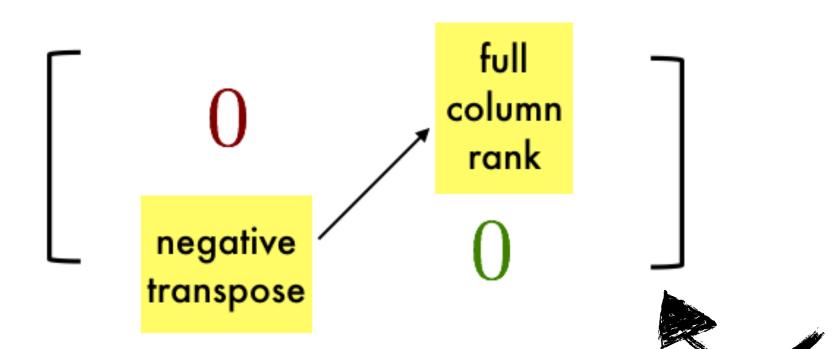


3. Similar to 1-unrolled [2] approximation of the pure minimization problem.

Attend our Oral Presentation!

WED DEC 6TH 11:05 – 11:20 AM Hall C

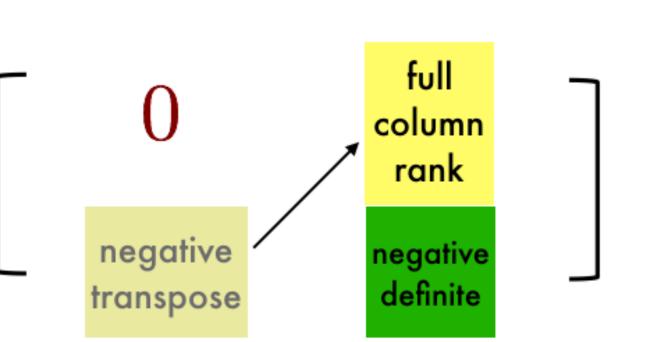
SIMULTANEOUS GRADIENT DESCENT WGAN

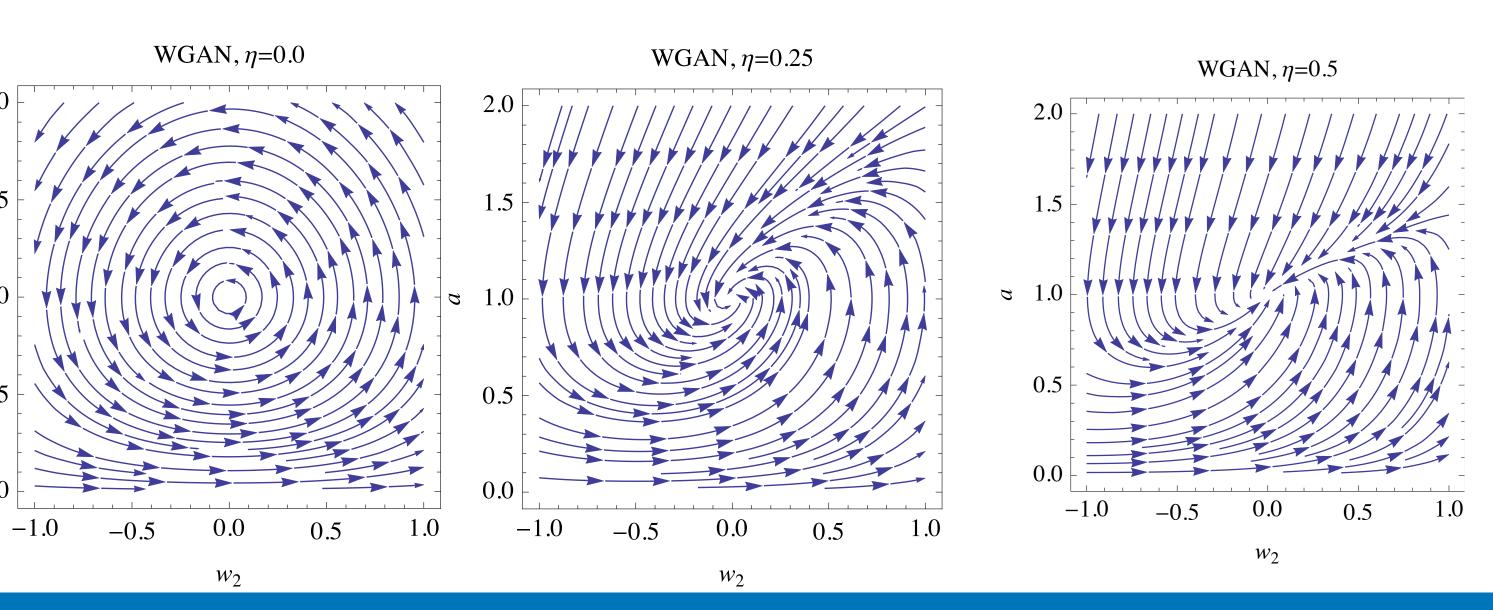


THEOREM: Under similar assumptions, the equilibrium of the regularized simultaneous gradient descent (W)GAN system is exponentially stable when η not too large.

(even though the discriminator is not trained to optimality!)

There exist simultaneous gradient descent WGAN systems which do not necessarily converge to the equilibrium.





CONCLUSION

Theoretical analysis of GAN dynamics using non-linear SYSTEMS: despite lack of concave-convexity, GANs are locally stable under right conditions – perhaps why they work so well in practice! Regularizer can provably enhance local stability.

OPEN QUESTIONS

 Analyze other objectives and optimization techniques: unrolled GANs, f-GANs ...

 Relaxing some assumptions: Non-realizability: when discriminator is not linear in parameters? Without strong curvature? Intuitively: slower convergence, but still stable... • Global convergence, at least for linear discriminator and generator!

• When do equilibria satisfying our conditions exist?

REFERENCES

H. K Khalil. Non-linear Systems. Prentice-Hall, New Jersey, 1996. L. Metz, et al., Unrolled generative adversarial networks. (ICLR 2017) M. Heusel et al., GANs trained by a TTUR converge to a local Nash equilibrium (NIPS 2017)

I. J. Goodfellow et al., Generative Adversarial Networks (NIPS 2014)