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We address a fundamental open question in GANs 
about the stability of the saddle point equilibrium, 

using tools from non-linear systems theory.

TOOLBOX: NON-LINEAR SYSTEMS

Proving GAN stability is hard because of concave-
concave-ity arbitrarily close to equilibrium, 
even for linear models!

Locally exponentially stable: if for any initialization sufficiently 
close to equilibrium, the system converges to equilibrium quickly. [1]

ASSUMPTIONS

GRADIENT NORM BASED REGULARIZATION

To use non-linear systems 
tools, we update both 

parameters 
simultaneously (not 

alternately) and 
infinitesimally for the true 

(not empirical) objective.

Some of our assumptions are strong, yet they shed light on what is 
required for stability.
1. 2.

OUR EXTENSION: Eigenvalue can have zero real part as long as it 
corresponds to direction within a subspace of equilibria

Alternative stability analysis: LASALLE’S INVARIANCE PRINCIPLE 
Informally, equilibrium is exponentially stable if there exists a non-
negative energy function (“Lyapunov function”) that at any time 
either  
i) strictly decreases 
ii) remains constant only instantaneously, 
and is zero only at equilibrium.

RESULTS

THEOREM: Under assumptions 1, 2, 3 the GAN system 
is locally exponentially stable.

The Jacobian at equilibrium is:
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Decreasing, and only 
instantaneously non-decreasing 
energy function: Distance from 

equilibrium
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An increasingly popular class of generative models  — models that 
“understand” data to output new random data. 
Formally, GANs learn distribution over the data. 

GENERATIVE ADVERSARIAL NETWORKS (GANS)
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CONCLUSION

THEORETICAL ANALYSIS OF GAN DYNAMICS USING NON-LINEAR 
SYSTEMS: despite lack of concave-convexity, GANs are locally 
stable under right conditions — perhaps why they work so well in 
practice! Regularizer can provably enhance local stability.

LINEARIZATION THEOREM: The equilibrium is 
locally exponentially stable iff Jacobian at 
equilibrium has eigenvalues with strictly 
negative real parts.

(even though the discriminator is not 
trained to optimality!) 

We assume at equilibrium, these locally convex functions are 
locally strongly convex — implying a locally unique equilibrium.

Relaxation: Zero eigenvalues 
must correspond to “flat” 
directions 
within a subspace of equilibria.

strongly convex

Key Lemma: Matrices of this form 
have eigenvalues with strictly 
negative real parts despite zero 
block!
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GAN dynamics for a small 
system learning a uniform 
distribution.
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2. Provides foresight to the generator: When norm of 
discriminator’s gradient is minimized, discriminator cannot 
improve itself much to outdo generator.

3. Similar to 1-unrolled [2] approximation of the pure 
minimization problem.

There exist simultaneous 
gradient descent WGAN 
systems which do not 
necessarily converge to the 
equilibrium.

OPEN QUESTIONS

	•Analyze other objectives and optimization techniques: unrolled 
GANs, f-GANs … 

	•Relaxing some assumptions: Non-realizability: when 
discriminator is not linear in parameters? Without strong 
curvature? Intuitively: slower convergence, but still stable… 
	•Global convergence, at least for linear discriminator and 
generator! 
	•When do equilibria satisfying our conditions exist?

Other proofs [3,4] require 
discriminator to be trained more often 
— effectively, closer to optimality, 
bringing system closer to pure 
minimization. 

Global equilibrium is realizable.

1. Makes Jacobian “more stable”


