Understanding The Failure Modes of Out-of-Distribution Generalization

Vaishnavh Nagarajanⁱ Anders Andreassen² Behnam Neyshabur²

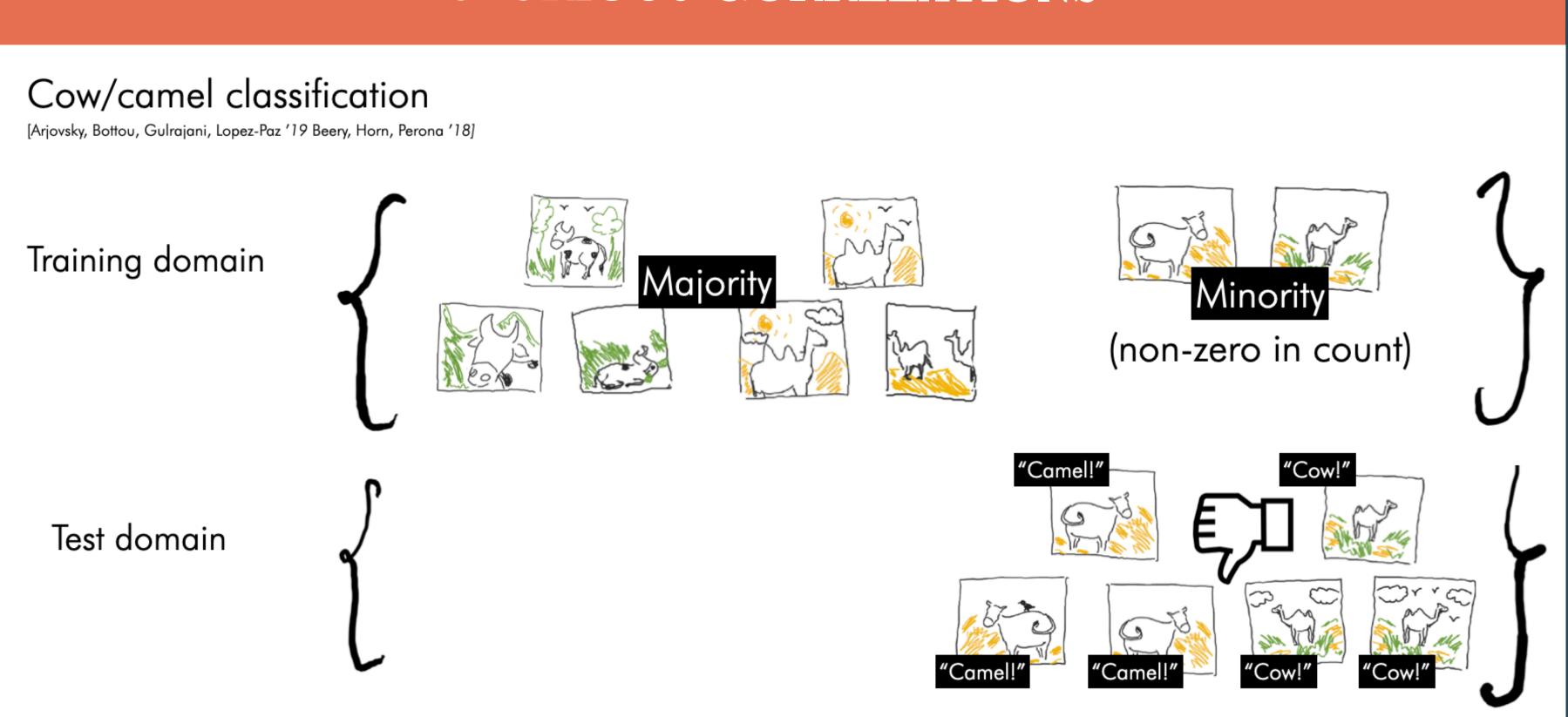
¹Computer Science Department, Carnegie Mellon University ²Blueshift, Alphabet

HIGH LEVEL MESSAGE

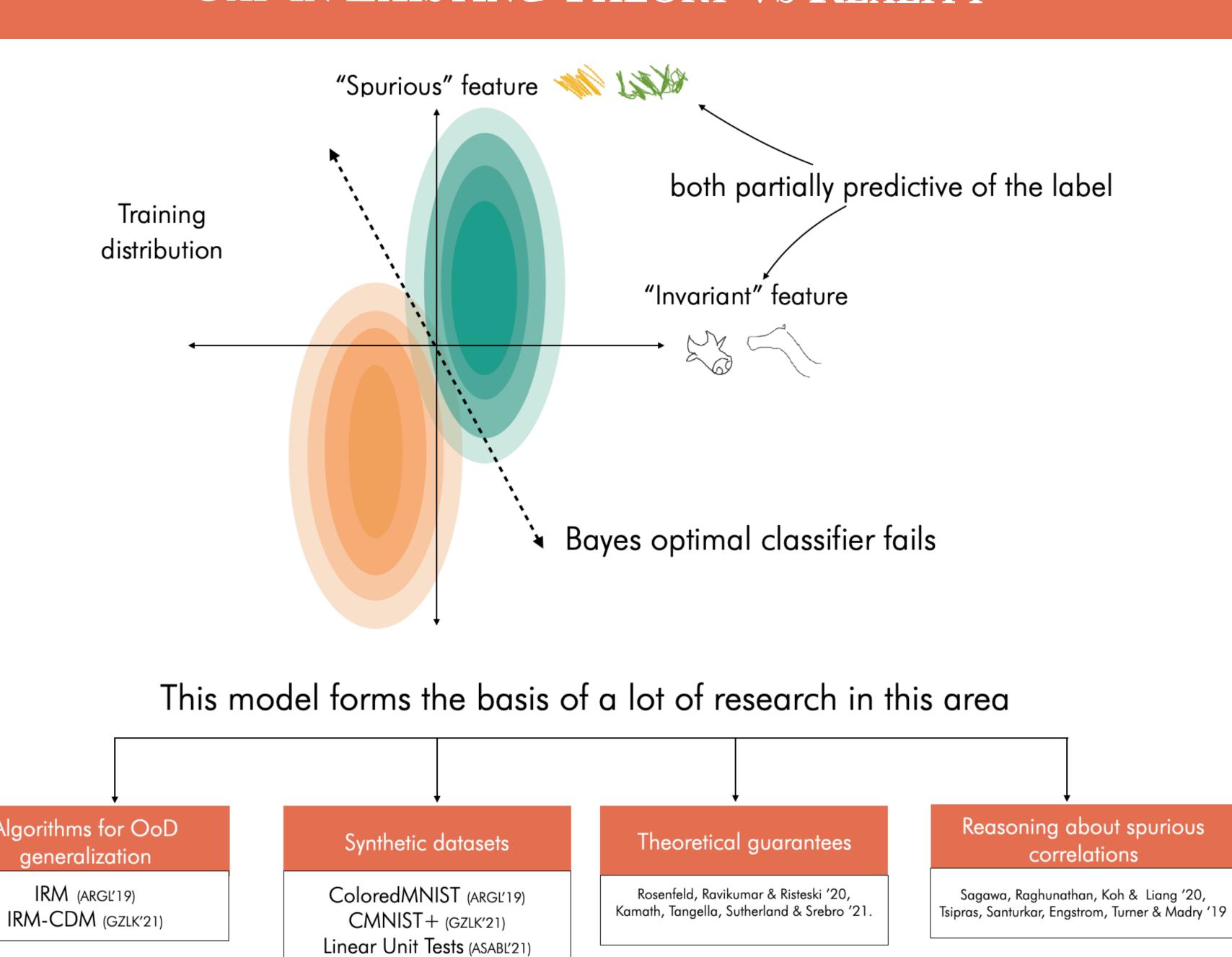
Why do classifiers rely on spurious correlations?

- 1. Existing theory does not capture the fundamental reasons!
- 2. We theoretically study GD-trained linear classifiers and discover two fundamental failure modes.
- 3. We empirically verify these failure modes in deep learning.

SPURIOUS CORRELATIONS

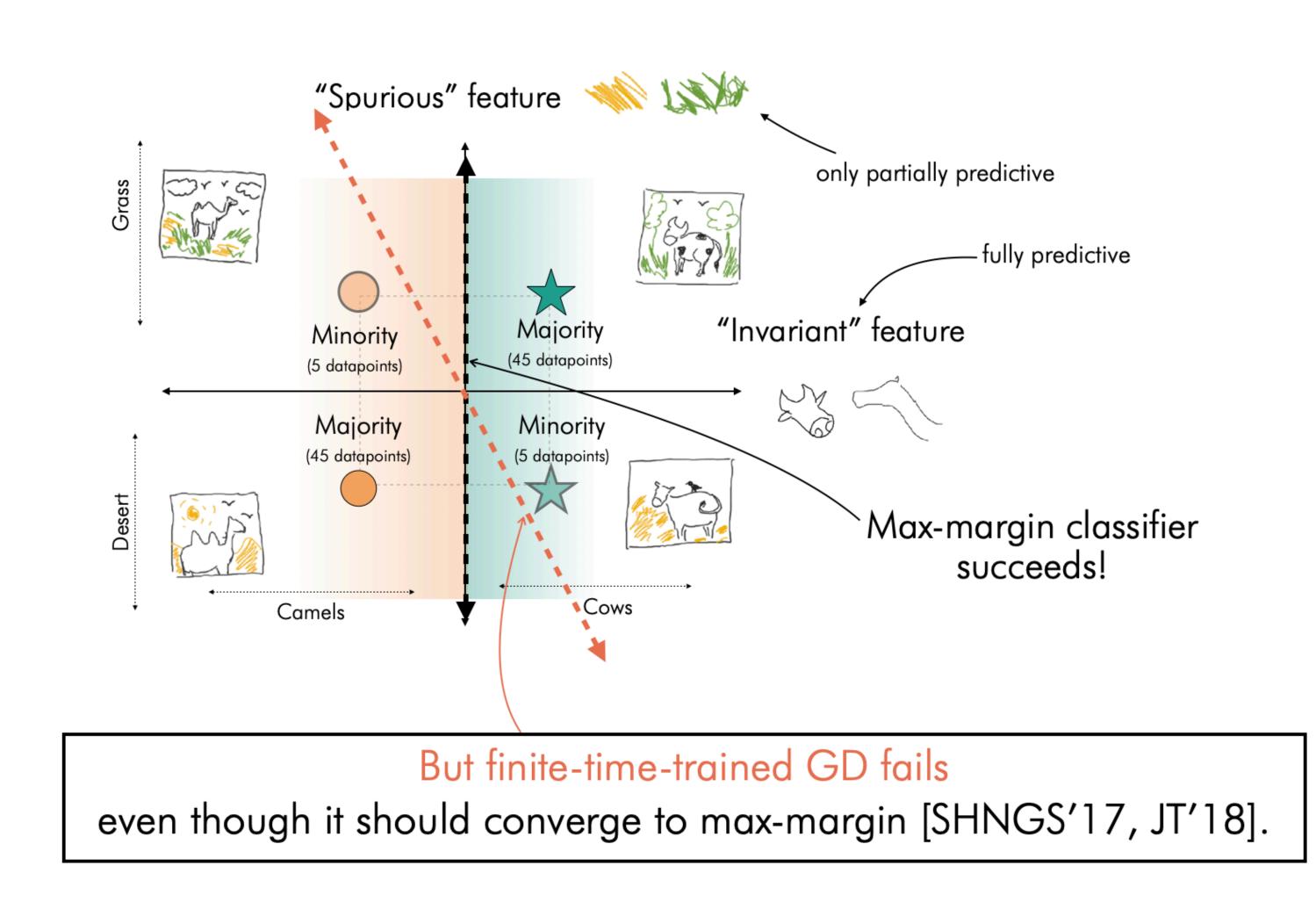


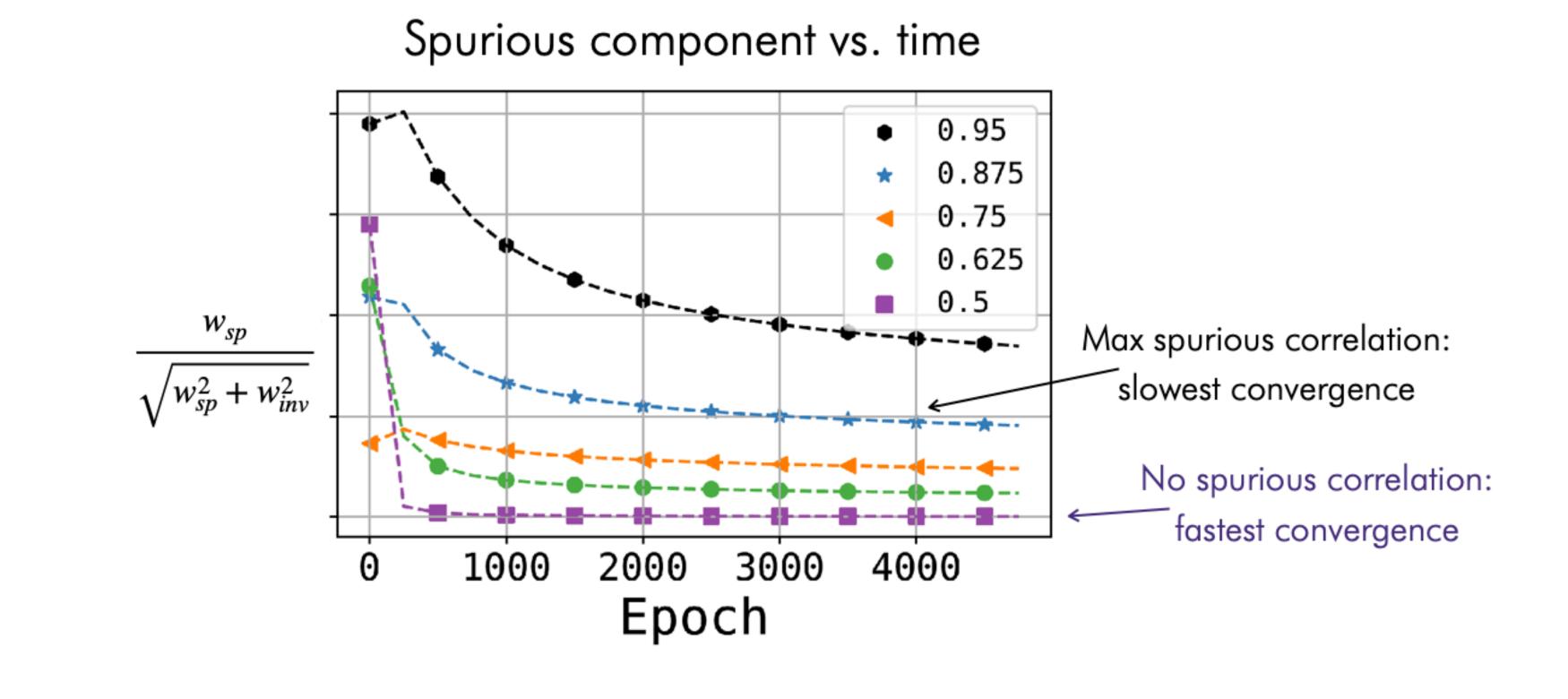
GAP IN EXISTING THEORY VS REALITY

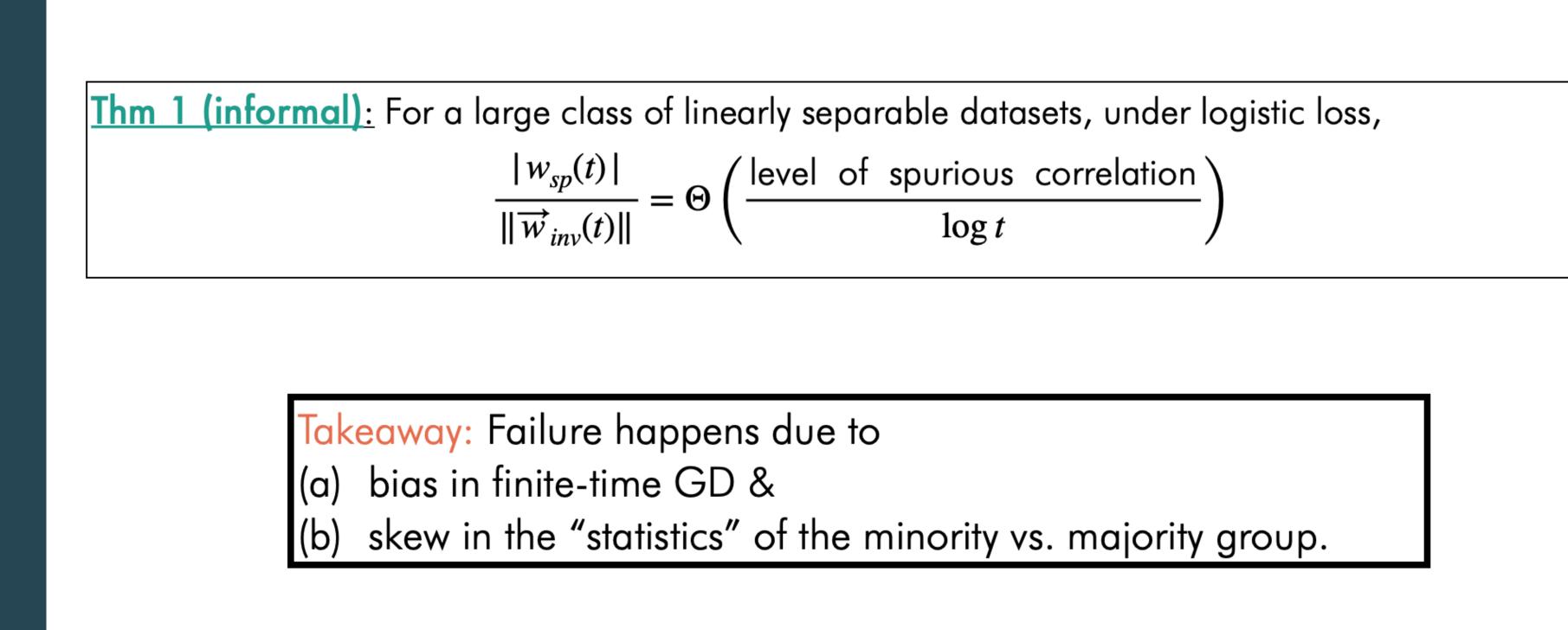


In practice, classifiers use the partially predictive spurious feature, even when the invariant feature is fully predictive!

FAILURE MODE 1: STATISTICAL SKEWS



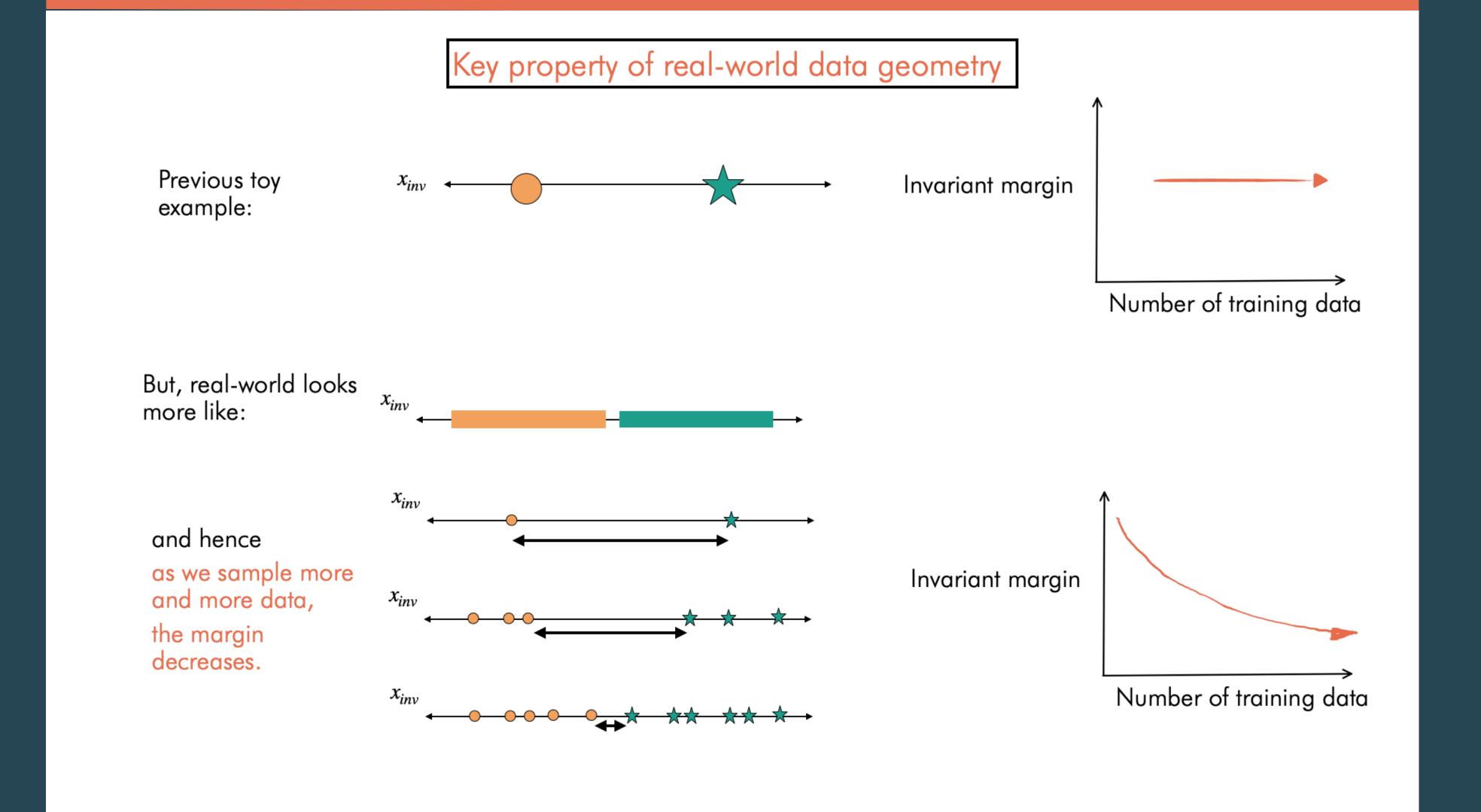


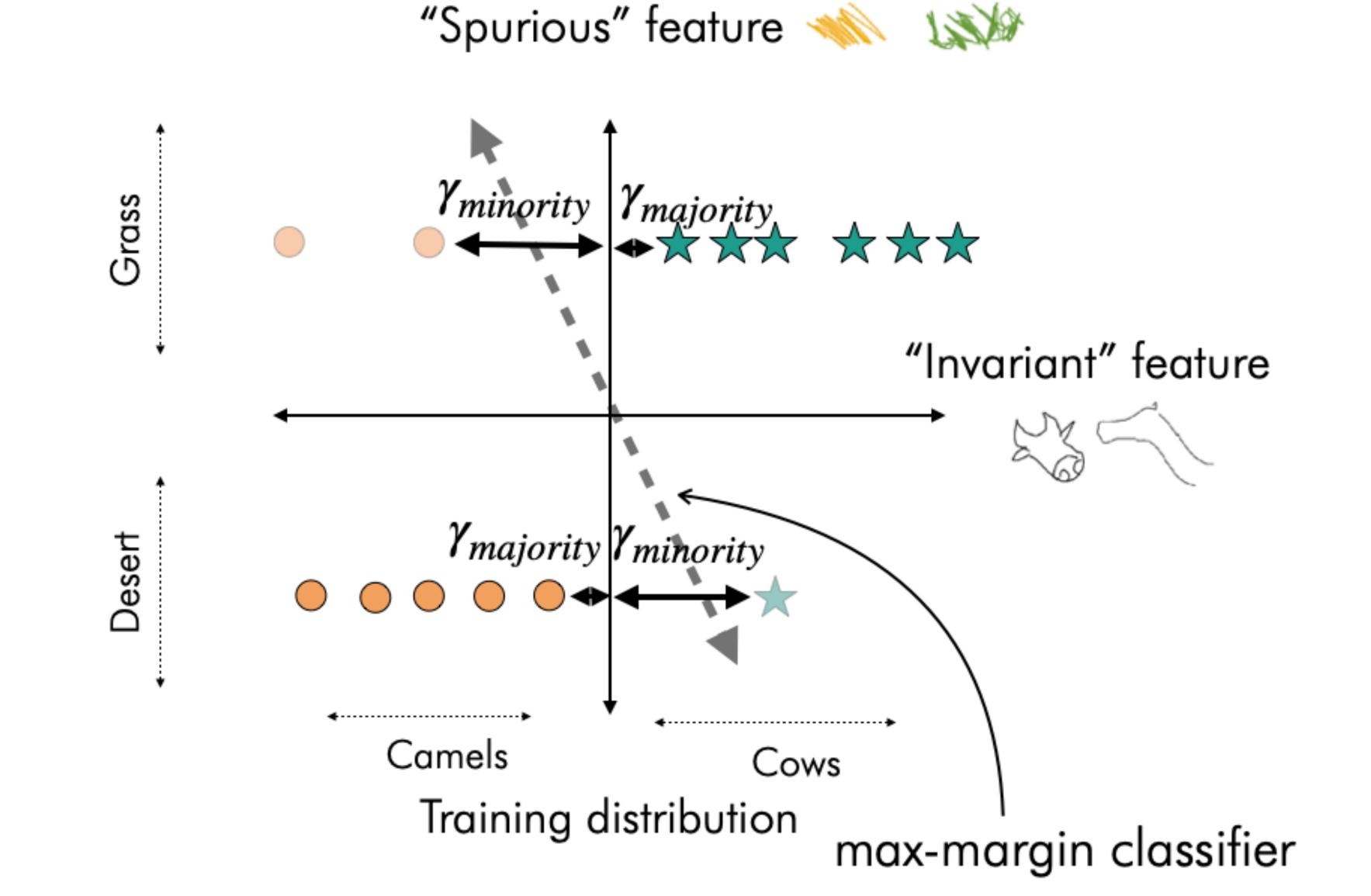


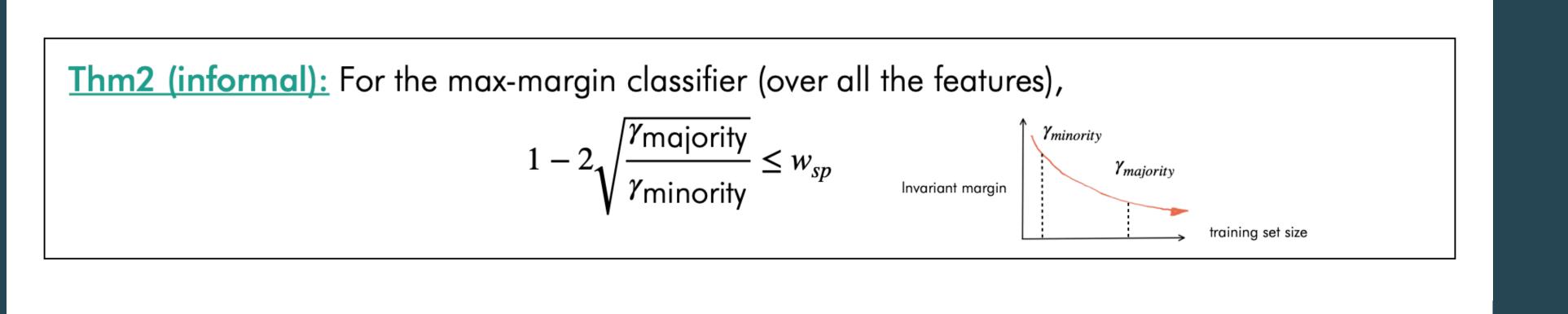
DOES MAX-MARGIN ALWAYS SUCCEED?

No! We show that when data has non-degenerate geometry, even max-margin classifier can fail...

FAILURE MODE 2: GEOMETRIC SKEWS



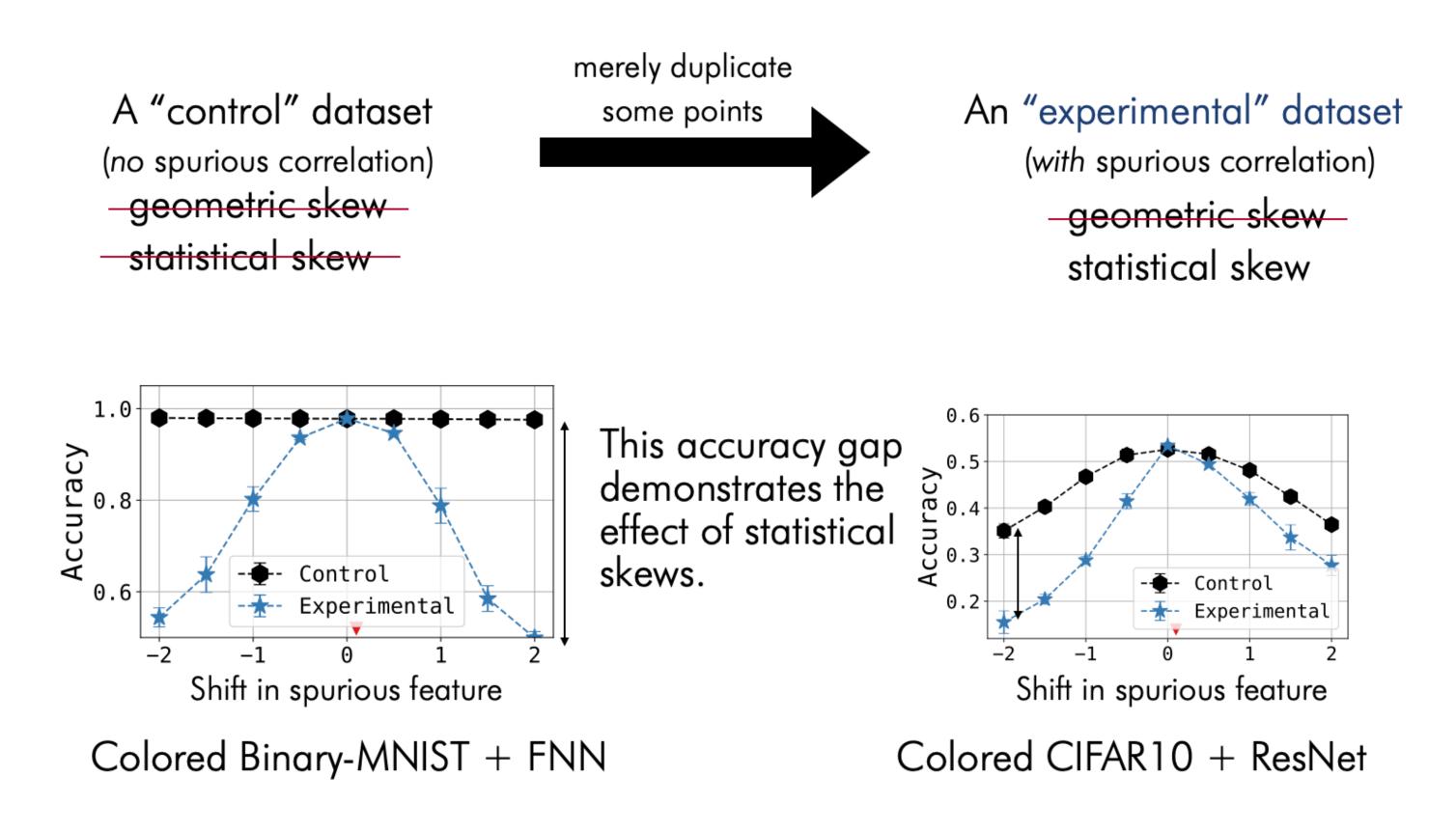




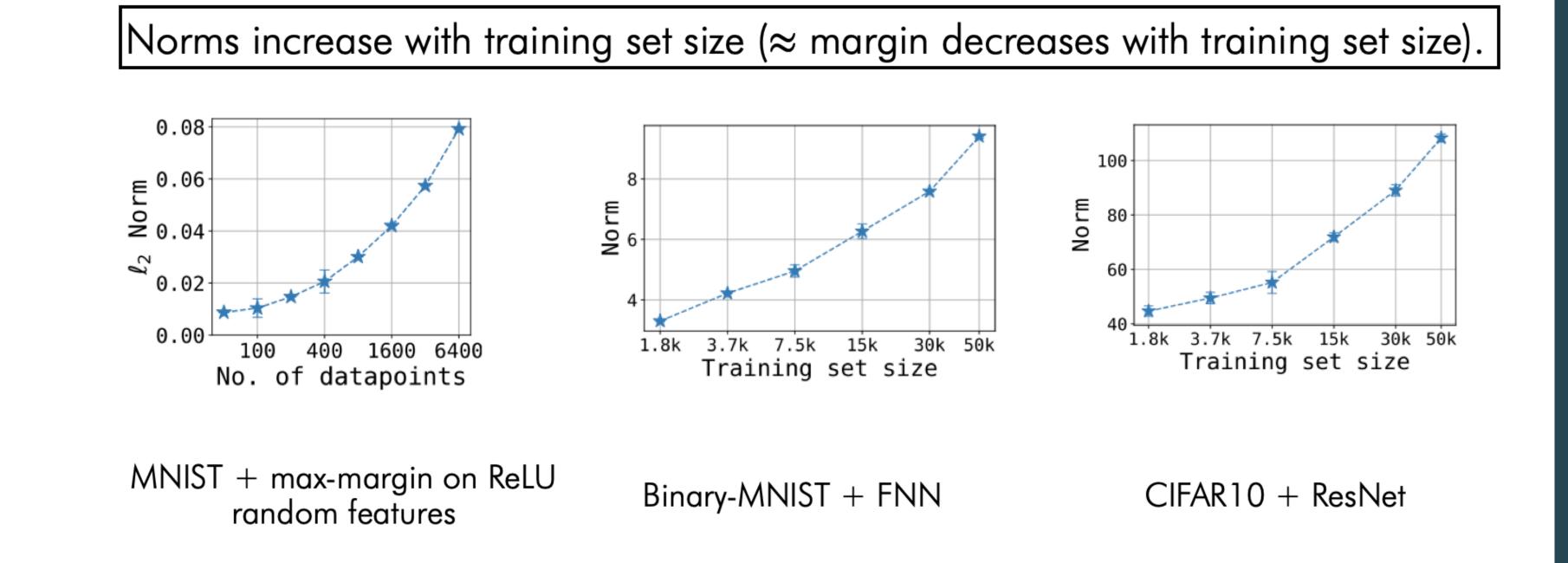
Takeaway: Failure happens because of

- (a) the skew in the geometry of the minority and majority group &
- (b) margin-maximizing bias.

EMPIRICAL VERIFICATION: STATISTICAL SKEWS



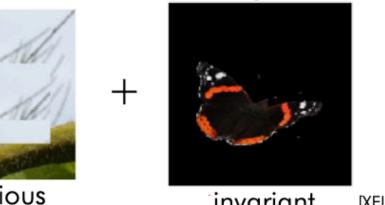
EMPIRICAL VERIFICATION: GEOMETRIC SKEWS



FUTURE WORK

No one unique way by which classifiers fail!)

- OoD failure modes unique to how deep representations are learned?
- OoD algorithms specialized towards the two skews?
- Characterize real-world "spurious features" vs. "invariant features"?



REFERENCES

- Arjovsky, Bottou, Gulrajani and Lopez-Paz, "Invariant Risk Minimization", 2019.
- Guo, Zhang, Lio, Kiciman, "Out-of-distribution prediction with IRM: The limitation and an effective fix", 2021
- Aubin, Slowik, Arjovsky, Bottou, Lopez-Paz, "Linear unit-tests for invariance discovery", CDCI ML workshop NeurIPS 2021
- Soudry, Hoffer, Nacson, Gunasekar, and Srebro. "The implicit bias of gradient descent on separable data". J. Mach. Learn. Res., 19, 2018
- Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression
- Sagawa, Raghunathan, Koh, and Liang. An investigation of why overparameterization exacerbates spurious correlations. 2020